
TENLAB:
When Matrices Are Not Enough

Mehmet Turkcan, Dallas R. Jones, Cem Subakan

May 11, 2016

TENLAB in One Slide (Or So)

I The name gives away the focus of the language!

I The example:

let A ∈ RI1×I2×I3 ,B ∈ RJ1×J2 , in

Ci1 =
∑
k1,k2

Ai1,k1,k2Bk1,k2

I In MATLAB this does not work really well:

C = sum (sum (b s x f u n (@times , A, s h i f t d i m (B,−1)) , 3) , 2) ;

and requires some thinking. Worse if the problem is not trivial.
I What if we could just write:

C = {1 ,1} A {2 ,3} .* B {1 , 2} ;

Now that’s some cool imperative laziness!

TENLAB in One Slide (Or So)

I The name gives away the focus of the language!
I The example:

let A ∈ RI1×I2×I3 ,B ∈ RJ1×J2 , in

Ci1 =
∑
k1,k2

Ai1,k1,k2Bk1,k2

I In MATLAB this does not work really well:

C = sum (sum (b s x f u n (@times , A, s h i f t d i m (B,−1)) , 3) , 2) ;

and requires some thinking. Worse if the problem is not trivial.
I What if we could just write:

C = {1 ,1} A {2 ,3} .* B {1 , 2} ;

Now that’s some cool imperative laziness!

TENLAB in One Slide (Or So)

I The name gives away the focus of the language!
I The example:

let A ∈ RI1×I2×I3 ,B ∈ RJ1×J2 , in

Ci1 =
∑
k1,k2

Ai1,k1,k2Bk1,k2

I In MATLAB this does not work really well:

C = sum (sum (b s x f u n (@times , A, s h i f t d i m (B,−1)) , 3) , 2) ;

and requires some thinking. Worse if the problem is not trivial.

I What if we could just write:

C = {1 ,1} A {2 ,3} .* B {1 , 2} ;

Now that’s some cool imperative laziness!

TENLAB in One Slide (Or So)

I The name gives away the focus of the language!
I The example:

let A ∈ RI1×I2×I3 ,B ∈ RJ1×J2 , in

Ci1 =
∑
k1,k2

Ai1,k1,k2Bk1,k2

I In MATLAB this does not work really well:

C = sum (sum (b s x f u n (@times , A, s h i f t d i m (B,−1)) , 3) , 2) ;

and requires some thinking. Worse if the problem is not trivial.
I What if we could just write:

C = {1 ,1} A {2 ,3} .* B {1 , 2} ;

Now that’s some cool imperative laziness!

MATLAB’s Solution

Summary of TENLAB

I Imperative multi-dimensional array manipulation language.

I Built to address the needs people in Machine Learning or
similar disciplines who want to work with multi-dimensional
arrays.

I Compiles into C (Fast!).

I Effortlessly interfaces with MATLAB.

I Includes a very powerful Tensor Product implementation.

Generalized Tensor-Tensor Product

Ci1 =
∑
k1,k2

Ai1,k1,k2Bk1,k2

C = {1,1} A {2,3} . ∗ B {1,2};

Output tensor

Collapse or not collapse

Matched dimensions
of A

Matched dimensions
of B

TENLAB: Even More Generalized Tensor-Tensor Product

TENLAB is even more flexible:

Ci1 =
∑
k1,k2

Ai1,k1,k2Bk1,k2

C = {1,1} {5,3,7} A {2,3} . ∗ {3,7} B {1,2};

Output tensor

Collapse or not collapse

Shape to use for A

Matched dimensions
of A

Shape to use for B

Matched dimensions
of B

Current List of Features & Ideology

I Generalized Tensor Product

I Be Like Water (When It Comes to Tensors)

I Memory Safety

I Functions and Scripts

I Full MATLAB Integration (With Multiple Outputs!)

Compiler Architecture

Scanner Parser

.ten Source File

Compiler Setting (MEX/C)

GCC

Compiled
Program

(.c)

Binary

TENLAB C
Library

IF Setting = C Code
Generation

AST

MATLAB

Compiled
Program

(.c)

.mex File

TENLAB
MEX

Library

IF Setting = MEX

Language Design

Function definitions followed by scripts:
1 % Beginning of Function Declarations

2 function gcd (Z, X, Y);

3 Z = X != Y;

4 while (Z);

5 if (X > Y);

6 X = X - Y;

7 else;

8 Y = Y - X;

9 end;

10 Z = X != Y;

11 end;

12 return X;

13 end;

14 % Beginning of the Script

15 tensor A;

16 tensor B;

17 tensor C;

18 A = 12;

19 B = 14;

20 A = gcd(C,A,B);

21 print(A);

Tensor Products

For simplicity, let’s consider a matrix product:
1 % Beginning of the Script

2 tensor X;

3 tensor Y;

4 tensor Z;

5 X = [[3 ,4] ,[4 ,5] ,[6 ,7]];

6 Y = [[1 ,2 ,3],[4,5,6]];

7 Z = [[0,0,0],[0,0,0],[0,0,0]];

8 Z = {1} {3,2} X {2} .* {2,3} Y {1};

9 print(Z);

MATLAB Integration

MATLAB integration works as follows:
1 % Beginning of the Script

2 tensor A;

3 tensor B;

4 tensor C;

5 input(A,1);

6 input(B,2);

7 input(C,3);

8 C = {1} {11,8,2} A {3} .* {22 ,44,2} B {3};

9 print(C);

10 output(C,1);

Built-in Functions

Design Constraint: Avoid the Standard Library Syndrome, but
remain versatile.

I print and shape: Display Results

I input and output: Get Data from MATLAB

I set, length, pop and dequeue: Change the Content

I reshape: Alter the Shape using Content

I clear and clean: Clear and Clean the Tensors

Testing

I A total of 61 test cases included.

I 35 for TENLAB, 18 for C libraries, 4 for low-level MEX
integration and 4 demos.

I Fundamental to the success of the team, automated test
suites were the first to be built.

Lessons Learned

I OCaml is not the enemy.

I Each member of the team should know everything about the
codebase.

I Testing and test automation is key. Without automation, we
would have had nothing.

I Gained a lot of ideas for future languages and implementation
improvements.

I Don’t lose hope or panic near the end, keep on going!

Demo

Let’s have some bsxfun!

The End: Q&A

Thanks a lot for listening! Any questions?

