
JaTesté
Build Software So Secure You May
Actually Make America Great Again

Jake Weissman, Andrew Grant, Jemma Losh, Jared Weiss

Why JaTesté?

● JaTesté promotes good coding practices,
allowing the programmer to easily define test
cases, for any function, directly into his or her
source code.

● Compiler creates two files:
○ 1) Normal executable
○ 2) An executable that runs the user-

defined tests and prints results

JaTesté Team

● Andrew Grant (amg2215@columbia.edu), Language Guru
● Jake Weissman (jdw2159@columbia.edu), Manager
● Jared Weiss (jbw2140@columbia.edu), Software Architect
● Jemma Losh (jal2285@columbia.edu), Tester

Software Development Environment

● Git + github
○ https://github.com/jaredweiss/JaTeste
○ 28 Issues Closed
○ 137 Pull Requests Closed
○ 530+ commits

● Vim
● Ubuntu 15.10 + VirtualBox
● OCaml
● Makefile

Teamwork Success

(Very) Quick JaTesté Overview

● Can directly embed test cases into one’s source code
○ This is the main point of the language

● Imperative programming language, with light object-oriented
features.
○ Syntax and paradigm similar to C, Java, etc

● Compiles into LLVM, a portable assembly-like language

(Very) Quick JaTesté Overview contd.

● Testing is at the heart of the JaTesté programming language
○ “with test” keyword appended to function to define tests
○ “using” keyword appended to “with test” block to set up

environment for tests

● Normal function

● Test cases for function

● Environment for test cases

JaTesté Program Syntax

● Program made up of four segments:
○ 1) Header files
○ 2) Global variables
○ 3) Function definitions
○ 4) Struct definitions

● Must be in this order

JaTesté Header Files Syntax

● Quotations for files from current
directory

● Greater/less than symbol for
files from standard library

JaTesté Statements Syntax

● Standard control flow constructs
○ For loops
○ While loops
○ If-else statments
○ Return statements

● Can have side effects

JaTesté Struct Syntax

● Structs can contain fields and
methods

● Like objects in Java
○ But significantly worse

JaTesté Test Syntax

./jatest-native -t source.jt lli source-test.ll

JaTesté Test Syntax contd.

./jateste-native
-t source.jt

lli source-test.ll

Compiler Overview

● Compiler files:
○ jateste.ml: entry point for soure code

○ Scanner.mll: reads characters, and outputs tokens

○ parser.mly: generates AST from tokens

○ ast.ml: defines AST

○ semant.ml: checks semantics of the AST, generates SAST

○ sast.ml: defines SAST

○ codegen.ml: turns SAST into LLVM code

○ exceptions.ml: defines error messages

● 1830 lines of Compiler source code
● Standard library in lib/ folder
● Test files in test/

Compiler Architecture

Compiler Overview contd.

● Key idea: if “-t” command line argument is supplied, the compiler
generates two executables
○ Normal file
○ Test file

● ./jateste-native -t source.jt -> source.ll, source-test.ll
○ lli source.ll
○ lli source-test.ll
○ (lli is an LLVM interpreter)

Compiler Overview contd.

source.jt (pseudo-
code)

source-test.ll
(pseudo-code)

source.ll (pseudo-
code)

Compiler Overview contd.

● cd src/
● make all -> outputs jateste-native binary
● ./jateste-native -t source.jt -> source.ll, source-test.ll

○ lli source.ll
○ lli source-test.ll

● JaTeste standard library in lib/

Testing

● Testing done via Makefile
○ diff test-var1.jt test-var.1out
○ diff test-class1.jt test-class1.out
○ etc....

● 126 test files
○ All passed

● Two Makefiles
○ Primary Makefile in src/ -> where source code is compiled
○ Test Makefile in test/ -> where tests are defined and added

Testing contd.

Testing contd.

Demo Time!

