
TENLAB

A MATLAB Ripoff for Tensors

Y. Cem Sübakan, ys2939
Mehmet K. Turkcan, mkt2126
Dallas Randal Jones, drj2115

February 9, 2016

Introduction

MATLAB is a great language for manipulating arrays. However, its syntactic ease is
more or less limited to 2D arrays; working with higher dimensional objects involves a lot
of ‘bsxfun’1 (pun definitely intended) and in turn nonnegligible willpower and experience.
In this project we intend to develop a streamlined tensor manipulation language for those
who would prefer to avoid bsxfun’s and dimension shifts.

Tensor research is an important field in data analysis. There exist a plethora of
applications ranging from audio source separation to image analysis, from chemometrics
to wireless communications [1, 2]. A good programming language with tensor support
would be helpful in any application involving multi-dimensional arrays. For instance,
when learning probabilistic models parameters often have multiple dimensions and we
need to utilize generalized tensor product operations. Of course one can attempt to
utilize a (potentially) huge number of for loops as well, but in this project we aim to
develop a general purpose MATLAB like language that would easily handle operations
with multi-way arrays.

Goals

• Create an extremely simple, easy to learn language strong enough for specialized
tensor-utilizing applications.

• Minimize the amount of code one has to write to work with tensors, make the
obvious approach the right one.

• Compile into C; this is excellent since people tend to work with ginormous tensors
in real life.

• Build something we would like to use in the future.

1http://www.mathworks.com/help/matlab/ref/bsxfun.html

1

Mathematical Motivation

Let us start with the most basic tensors, vectors. Let a, b ∈ RL (column vectors), and
let z ∈ RL be the output vector. The inner product of a and b is given as

z =
L∑
i=1

aibi (1)

Now, in a language like C, we need to run a boring for loop to do this summation. On
the other hand, in MATLAB we can simply write

z = a’*b;

where ′ transposes the vector a. Moving on to matrices, let A ∈ RL1×K , and B ∈ RK×L2 .
Let Z ∈ RL1×L2 the output matrix. In index notation, Z is the following,

Zi,j =
L∑
k=1

AikBkj . (2)

which requires three nested loops in C. In MATLAB, this is simply

Z = A*B;

So far so good. But now let’s move on to tensors. Let A ∈ RI1,I2,I3 , and B ∈ RJ1,J2 . Let’s
fancy that we ’need’ to perform the following ugly operation (again Z is the output):

Zi1,i3,j1 =

I2∑
i2=1

Ai1,i2,i3Bj1,i2 , (3)

where we need I2 = J2, in order to be able to define the operation. Notice that the
output ordering of the indices is arbitrary and it needs to be specified. In C, this
requires illegible number of nested for loops, and in MATLAB people can get confused
when reading statements like

Z = reshape(sum(bsxfun(@times,A, permute(reshape(B ,[1 1 J1 J2]), ...
[1 2 4 3])),3),[I1 I3 J1]);

in which the matrix B is first reshaped into a 4 dimensional object, after which the indices
are permuted to get the summation along the desired dimensions. After an another sum
over the 3rd dimension, the result is finally reshaped into the form originally desired.
Note that we may need to use a permute operation if we want to have the output indices
in a different order. The point is that this is unnecessarily difficult. Indeed, it would be
nice if we could write this instead:

Z{1, 3, 2} = {1} A{2}.B{1};

where we specify the indices over which we would like to sum for each tensor on the
right hand side and the index ordering for the output tensor on the left hand side.
This automatically matches the second dimension of A with the first dimension of B

2

for summation. Then, the output is permuted according to index list specified on the
left of the assignment operator =, to the right of which we specify a binary for each
index specifying whether we would like to sum over the matched dimensions. If we don’t
specify a list next to the output, it will return a default index ordering (it won’t permute
the output indices). Similarly, if we want to code

Zi1 =

I3∑
i3=1

I2∑
i2=1

Ai1,i2,i3Bi3,i2 , (4)

we can hope to type:

Z = {1, 1} A{2, 3}.B{2, 1};

If we do not wish to collapse (sum over) one of the matched dimensions, we simply
put a zero to the corresponding entry in the list to the right of the assignment operator.
For example,

Z = {0, 1} A{2, 3}.B{2, 1};

corresponds to the operation

Zi1,i2 =

I3∑
i3=1

Ai1,i2,i3Bi3,i2 , (5)

Notice that this generalized tensor product operation ‘includes’ the outer product,
therefore we will simply leave the lists empty for outer products. That is,

Zi1,i2,i3,j1,j2 = Ai1,i2,i3Bj1,j2 . (6)

will be produced by

Z = {} A {} . B {}

3

A Trivial Example

Here’s an example in pseudocode written in the “For style” for ’Variational Bayes for
Infinite Mixtures of Hidden Markov Models’:

Algorithm 1 Variational Bayes for an infinite mixture of HMMs

for e = 1 : maxiter do
for k = 1 : K do

for j = 1 : J do
Nk,j =

∑N
n=1

∑Tn
t=1 p

h
k,np

r
j,t,n (update pseudo counts)

Õk,j =
σ2µ0+σ2

0

∑N
n=1

∑Tn
t=1 p

h
k,np

r
j,t,nxt,n

Nk,jσ
2
0+σ

2 (update the means)

σ̄2k,j =
σ2σ2

0

Nk,jσ
2
0+σ

2 (update cluster variances)

end for
end for
for k = 1 : K do

for j1 = 1 : J do
for j2 = 1 : J do

Ãk,j1,j2 = β− 1 +
∑N

n=1 p
h
k,n

∑Tn
t=2 p

r
j,t,np

r
j,t−1,n (update transition ma-

trix parameters)
end for

end for
end for
for k = 1 : K do (update stick breaking parameters)

α̃k = α+
∑N

n=1 p
h
k,n

γ̃k = 1 +
∑N

n=1

∑K
k′=k+1 p

h
k′,n

end for
...

end for

Note that ph is a two dimensional tensor (matrix) and pr is a three dimensional
tensor (h and r are superscripts, they are not indices!). Now, look how much simpler it
would be to code this in our language:

for e = 1 : maxiter
N = {1} Ph{2}.reshape(sum(Pr,2),[J N]){2}; %notice that we are using the

add operation
O = ({1}(Ph{2}.reshape({1 0}Pr{2 3}.X{1 2}),[J N]){2})*sigma0 + c1) *

c2;
Sig = 1./ (N*sig0 + sig); %just like MATLAB
A = {1}Ph{2} reshape({1}Pr(:,2:end,:){2}Pr(:.1:end-1,:){2} , [J N])

{2} + b - 1;
Al = a + sum(Ph,2);
Gam = 1 + cumsum(sum(Ph,2)); %cumsum stands for cumulative sum, from

MATLAB
end

4

Syntax and Thoughts

We will try to stick to MATLAB’s syntax as much as possible since (a) a lot of people
are familiar with it, and (b) it is awesome for the most part. That is, we are going to use
the same syntax for comments, while loops, for loops, if statements, array access (that
is, things like A(:,1), A(2,:)).

One other prospect is to generalize the tensor product into a general binary tensor
operation. That is, If we use + instead og ., that would mean that we would add the
matching dimensions instead of multiplying. For example, we can write

Z ={1} A{4} + B{8};

We can generalize this into any binary operation, as specified in the help page of bsxfun2.
This would practically mean that we have a more intuitive version of bsxfun, though
perhaps not as capable.

Another very interesting direction to take would be to allow varying lengths across
dimensions. In the example we have given the data matrix (which is in fact a list) is
definitely so. Each slice n of the data list X, contains a matrix with a differently sized
second dimension. In real data applications this is indeed something to worry about
and one needs to deal with cell arrays in MATLAB which are not easily amenable to
algebraic operations.

References

[1] Kolda, T. G. and B. W. Bader, “Tensor Decompositions and Applications”, SIAM
Review , Vol. 51, pp. 455–500, 2009.

[2] Cichocki, A., D. P. Mandic, A. H. Phan, C. F. Caiafa, G. Zhou, Q. Zhao and L. D.
Lathauwer, “Tensor Decompositions for Signal Processing Applications From Two-
way to Multiway Component Analysis”, CoRR, Vol. abs/1403.4462, 2014, http:
//arxiv.org/abs/1403.4462.

2http://www.mathworks.com/help/matlab/ref/bsxfun.html

5

