
RockyII

“I feel like a Kentucky Fried Idiot”
- Rocky Balboa

Un Sung Yoo (uy2106)
Anish King (awk2123)

1. Describe the language you plan to implement
1.1 Motivation

Why do we always program in English?

Spanish, Japanese, Korean, Tamil. These are a few of many native languages of some
of the greatest programmers in the world. Our language attempts to successfully
integrate “foreign” language speakers into a single programming language that
successfully accommodates every talented programmer in the world.

There are many talented programmers that would value a language that can compile
their native mother tongue. Like Linux that gives the user the power, we are attempting
to build a simple, minimalistic aesthetic that gives the user the power to customize and
implement programs of their own design. We hope that the momentum of such a user-
friendly language will promote an appreciation of open source development such that
people around the world build things together that they may use together.

1.2 Language Description

Our language, very simply put, lets a user program in their native human language. That
means for loops, if/else conditions, variables, and everything are implemented in the
users’ own human language, converted via typeset and compiled effectively via OCaml,
and output to C code / assembly code output to produce a versatile, beautiful, and all
around robust programming language.

2. Explain what sorts of programs are meant to be written in your language

In one word? ANYTHING.

Our language is built for programmers that love imperative programming languages.
Let’s think about the C language. C is a low-level imperative language that you can build
an operating system with, as illustrated by the famous case of Linux and its many
derivatives. Our language is a human-language friendly version of C. Think about
programming in C, but you program in your mother tongue, be it Icelandic, French, or
one of the many native languages of Papua New Guinea. Since we have only one
semester for building this language, we will implement only a few human languages.

This presents a “limitation” but as previously described, we hope the momentum of our
project will provide a platform for a significant level of open source development. We will
implement, in a few select human languages known between us as the two
programmers, basic imperative language necessities like creating functions, recursive
definitions, and even object oriented programming basics.

Ultimately, we hope users of RockyII will go above and beyond what we, the creators,
can possibly dream of to create systems that are robust, beautiful, and capable of
translating human tasks into automated ones via one’s own mother tongue.

3. Explain the parts of your language and what they do

This language is based on established programming principles whilst being creative via an
appreciation for our shared interest in a minimalistic aesthetic. See below.

Comments:

Single Line //
 Multi line /* multi

*/

Data types:

int Integers
float Floating Values
char Characters
bool Boolean Value

string Bunch of Characters
void Or something like in ocaml a'

Data Structures:

The only included data structure is arrays.

The reason is other data structures can be built by the user, but arrays are necessary.

Operators, Comparators, Functions

Operators +, -, *, / (we don’t offer other than these because it’s imperative!)

++, --
Comparators ==, <=, >=, <, >, and (for English speakers, direct translation in other

languages), or (for English speakers, direct translation in other
languages)

Predefined
Functions

print
for printing, example:
print “hello world”;
enter
for handling user input, example:
int a;
enter a; // this will be taken care as a’ (void in C)
parseToChar(string, index)
- parse string to char
- strings will be built based on OCaml’s array function so they can

parsed easily
Creating
Functions

(data types) f(x) name {
// statements
}
example: f(x) foo {
int x = x;
x = x + 1; // handling local variables
return x;

As in any imperative language, you may create any customized
function that you so desire.

Basic
Functions

main() {
 // statements
}
or
main(string argv[]) {
 // statements
}

Library option:

Use a customized library for OCaml and have it available for later use.
(Unsure? Please advise.)
4. Include the source code for an interesting program in your language

If we can write it in C, we can write it in RockyII:

int f(int n) fib {
if n < 2 {

return n;
else {

fib(n - 1) + fib(n - 2); // our language can do recursive !!
 }

}
int main {

if argv.size > 2 and argv.size < 2 {
Err argv[0] + " [int values]\n";

}
print fib(argv[1]);
return 1;

}
Output
==
./fib 3
2
./fib 3 2
Error Message: Supposed to be ./fib [int values]
./fib
Error Message: Supposed to be ./fib [int values]
===
In Korean:

정수 함수(n) fib { // int f(n) fib

조건 n < 2 { // if n < 2
반납 n; // return n;

} 그외 { // else
반납 fib(n - 1) + fib(n - 2); // return fib(n -1) + fib(n - 2);

 }
}
정수 본문 { // int main

조건 인수.크기 > 2 그리고 인수.크기 < 2 { // if argv.size > 2 and argv.size < 2
에러 인수[0] + "[int values]\n"; // Err argv[0] + “[int values]”;
}
출력 fib(인수[1]); // print fib(argv[1]);
반납 1; return 1;
}

These two implementations of the same algorithm can be done in any human language
thanks to RockyII.

This sample code shows but a snippet of the possibilities provided by RockyII.

5. Note.

We call our language RockyII because we are the underdogs. We are unexpected. We are
heros. And moreover, RockyII is a hero, and it’s going to change the way programmers
worldwide program.

