PLT 4115 LRM: JaTesté

Andrew Grant Jemma Losh Jared Weiss
amg2215@columbia.edu jal2285@columbia.edu jbw21400@columbia. edu

Jake Weissman
jdw2159@columbia. edu

March 7, 2016

Contents

1 Introduction 4
2 Lexical Conventions 4
2.1 Identifiers oL e 4

2.2 Keywords e e 4
2.3 Constants e e 4
2.3.1 Imteger Constants« . . e 4

2.3.2 Double Constants e e e e e e 4

2.3.3 Character Constants 5

2.3.4 String Constants e 5

2.4 0perators e 5
2.5 White Space. 5
2.6 Comments e e e e e 5
2.7 Separators e e 5

3 Data Types 5
3.1 Primitives e e 6
3.1.1 Imteger Types o Lo 6

3.1.2 Double Types o e 6

3.1.3 Character Type e 6

3.1.4 String Type e 7

3.2 SEIUCLUTES o o o e e e e e e e e e e 7
3.2.1 Defining Structures 7

3.2.2 Initializing Structures L e 7

3.2.3 Accessing Structure Members L 8

3.3 AITAYS . . . L e 8
3.3.1 Defining Arrays e e e 8

3.3.2 Initializing Arrays e e 8

3.3.3 Accessing Array Elements oL 8

4 Expressions and Operators 9
4.1 EXPressions o v it e e e e e e e e s 9

4.2 Assignment Operators 9
4.3 Incrementing and Decrementing L oL L 10
4.4 Arithmetic Operators 10
4.5 Comparison Operators e 10
4.6 Logical Operators. e 11
4.7 Operator Precedence L 11
4.8 Order of Evaluation 11

5 Statements 11
5.1 If Statement L e 12
5.2 While Statement L e 12
5.3 For Statement L 12
5.4 Code Blocks e e 13
5.5 Return Statement L 13

6 Functions 14
6.1 Function Declarations e 14
6.2 Function Definitions e e e 14
6.3 Calling Functions e 15
6.4 Function Parameters e 15
6.5 Recursive Functions e 16

6.6 Function Test Cases

7 Scanner and Parser Code
7.1 scanner.mll
7.2 parser.mly

1 Introduction

The goal of JaTesté is to design a language that promotes good coding practices - mainly as it relates to
testing. JaTesté will require the user to explicitly define test cases for any function that is written in order to
compile and execute code. This will ensure that no code goes untested and will increase the overall quality
of programmer code written in our language. The user will be required to provide some test cases for their
code, and the language will also generate some important test cases for their code as well. JaTesté is mostly
a functional language with a syntax quite similar to C. The details of our language usage is provided in the
rest of the document.

2 Lexical Conventions

This chapter will describe how input code will be processed and how tokens will be generated.

2.1 Identifiers

Identifiers are used to name a variable, a function, or other types of data. An identifier can include all
letters, digits, and the underscore character. An identifier must start with either a letter or an underscore
- it cannot start with a digit. Capital letters will be treated differently from lower case letters. The set of
keyword, listed below, cannot be used as identifiers.

D = ll([)a;_:z; ’A"’Z’] | :_;) ([;az_;z; 7A:_:Z;] | [;0:_;9:] | :_;)*ll

2.2 Keywords

Keywords are a set of words that serve a specific purpose in our language and may not be used by the
programmer for any other reason. The list of keywords the language recognizes and reserves is as follows:

int, char, double, struct, if, else, for, while, with test, using, func, return, string,
int*, char*, struct*, doublex, new, int[], char[], doublel[]

2.3 Constants

Our language includes integer, character, real number, and string constants. They’re defined in the following
sections.

2.3.1 Integer Constants

Integer constants are a sequence of digits. An integer is taken to be decimal. The regular expression for an
integer is as follows:

digit = [’0’ - ’9’]
int = digit+

2.3.2 Double Constants

Real number constants represent a floating point number. They are composed of a sequence of digits,
representing the whole number portion, followed by a decimal and another sequence of digits, representing
the fractional part. Here are some examples. The whole part or the fractional part may be omitted, but not
both. The regular expression for a double is as follows:

double = int | digit*[’.’ldigit+ | digit+[’.’]digit*

2.3.3 Character Constants

Character constants hold a single character and are enclosed in single quotes. They are stored in a variable
of type char. Character constants that are preceded with a backslash have special meaning. The regex for
a character is as follows:

char = [’a’ -7z’ YA’ - ’Z’]

2.3.4 String Constants

Strings are a sequence of characters enclosed by double quotes. A String is treated like a character array.
The regex for a string is as follows:

string = char*

Strings are immutable; once they have been defined, they cannot change.

2.4 Operators

Operators are special tokens such as multiply, equals, etc. that are applied to one or two operands. Their
use will be explained further in chapter 4.

2.5 White Space

Whitespace is considered to be a space, tab, or newline. It is used for token delimitation, but has no meaning
otherwise. That is, when compiled, white space is thrown away.

WHITESPACE = "[> *> \t’ ’\r’ ’\n’]"

2.6 Comments

A comment is a sequence of characters beginning with a forward slash followed by an asterisk. It continues
until it is ended with an asterisk followed by a forward slash. Comments are treated as whitespace.

COMMENT = "/* [~ */]% \x/ "

2.7 Separators

Separators are used to separate tokens. Separators are single character tokens, except for whitespace which
is a separator, but not a token.

(2 { LPAREN }
DK { RPAREN }
{0 { LBRACE }
} { RBRACE }
250 { SEMI }

7,0 { comma }

3 Data Types

The data types in JaTeste can be classified into three categories: primitive types, structures, and arrays.

3.1 Primitives

The primitives our language recognizes are int, double, char, and string.

3.1.1 Integer Types

The integer data type is a 32 bit value that can hold whole numbers ranging from —2, 147, 483, 648 to 2,147,483, 647.
Keyword int is required to declare a variable with this type. A variable must be declared before it can be
assigned a value, this cannot be done in one step.

1 | int a;
2 |a = 10;
3 la = 21 % 2;

The grammar that recognizes an integer deceleration is:

typ ID

The grammar that recognizes an integer initialization is:

ID ASSIGN expr

3.1.2 Double Types

The double data type is a 64 bit value. Keyword double is required to declare a variable with this type. A
variable must be declared before it can be assigned a value, this cannot be done in one step.

1 | double aj;
2 |la = 9.9;
17 / 3;

3 a

The grammar that recognizes a double deceleration is:

typ ID

The grammar that recognizes a double initialization is:

ID ASSIGN expr

3.1.3 Character Type

The character type is an 8 bit value that is used to hold a single character. The keyword char is used to
declare a variable with this type. A variable must be declared before it can be assigned a value, this cannot
be done in one step.

1 | char a;
2 la = ’h’;

The grammar that recognizes a char deceleration is:

typ ID SEMI

The grammar that recognizes a char initialization is:

typ ID ASSIGN expr SEMI

1

2

© o N o o A w N e

1

2

3.1.4 String Type

The string type is variable length and used to hold a string of chars. The keyword string is used to declare
a variable with this type. A variable must be declared before it can be assigned a value, this cannot be done
in one step.

string a;
a = "hello";

The grammar that recognizes a char deceleration is:

typ ID SEMI

The grammar that recognizes a char initialization is:

typ ID ASSIGN expr SEMI

3.2 Structures

The structure data type is a user-defined collection of primitive types and other structure data types. The
keyword “struct” followed by the name of the struct is used to define structures. Curly braces are then used
to define what the structure is actually made of. As an example, consider the following:

3.2.1 Defining Structures

struct person = {
string name;

int age;

int height;

ks

struct manager = {
struct person name;
int salary;

};

Here we have defined two structs, the first being of type struct person and the second of type struct
manager. The grammar that recognizes defining a structure is as follows:

STRUCT STRING_LITERAL ASSIGN LBRACE vdecl_list RBRACE

3.2.2 Initializing Structures

To create a structure, the new keyword is used as follow:

struct manager yahoo_manager = new struct manager;
struct person sam = new struct person;

NEW STRUCT ID

Here, we create two variables yahoo_manager and sam. The first is of type “struct manager”, and the
second is of type “struct person”.

3.2.3 Accessing Structure Members

To access structs and modify its variables, a period following by the variable name is used:

1 | yahoo_manager .name = sam;
2 | yahoo_manager.age = 45;
s | yahoo_manager.salary = 65000;

Ultimately, all structures are backed by some collection of primitives. For example, the first structure, “struct
manager”, is made up of another struct and an int. Since “struct person” is made up of two ints, “struct
manager” is really just made up of three ints. Note accessing members of structs is actually just another
expression and thus always returns some value.

expr DOT expr

3.3 Arrays

An array is a data structure that allows for the storage of one or more elements of the same data type
consecutively in memory. Each element is stored at an index, and array indices begin at 0. This section will
describe how to use Arrays.

3.3.1 Defining Arrays

An array is declared by specifying its data type, name, and size. The size must be positive. Here is an
example of declaring an integer array of size 5:

1 [arr = new int [5];)

ID ASSIGN NEW prim_typ LBRACKET INT_LITERAL RBRACKET

3.3.2 Initializing Arrays

An array can be initialized by listing the element values separated by commas and surrounded by brackets.
Here is an example:

1[arr={0,1,2,3,4}§)

It is not required to initialize all of the elements. Elements that are not initialized will have a default
value of zero.
3.3.3 Accessing Array Elements

To access an element in an array, use the array name followed by the element index surrounded by square
brackets. Here is an example that assigns the value 1 to the first element (at index 0) in the array:

1(arr[O] = 1; J

Accessing arrays is simply an expression:

expr LBRACKET INT_LITERAL RBRACKET

JaTeste does not test for index out of bounds, so the following code would compile although it is incorrect;
thus it is up to the programmer to make sure he or she does not write past the end of arrays.

1 |arr = new int [2];
2 |arr[5] = 1;

1

2

3

4 Expressions and Operators

4.1 Expressions

An expression is a collection of one or more operands and zero or more operators that can be evaluated to
produce a value. A function that returns a value can be an operand as part of an expression. Additionally,
parenthesis can be used to group smaller expressions together as part of a larger expression. A semicolon
terminates an expression. Some examples of expressions include:

35 - 6;
foo(42) * 10;
8 - (9 / (2 + 1));

The grammar for expressions is:

expr:
expr:

INT_LITERAL

ID

expr PLUS expr

expr MINUS expr

expr TIMES expr

expr DIVIDE expr

expr EQ expr

expr EXPO expr

expr MODULO expr

expr NEQ expr

expr LT expr

expr LEQ expr

expr GT expr

expr GEQ expr

expr AND expr

expr OR expr

NOT expr

AMPERSAND expr

expr ASSIGN expr

expr DOT expr

expr LBRACKET INT_LITERAL RBRACKET
NEW prim_typ LBRACKET INT_LITERAL RBRACKET
NEW STRUCT ID

ID LPAREN actual_opts_list RPAREN

4.2 Assignment Operators

Assignment can be used to assign the value of an expression on the right side to a named variable on the left
hand side of the equals operator. The left hand side can either be a named variable that has already been
declared or a named variable that is being declared and initialized in this assignment. Examples include:

int x;
x = b;
float y;
y = 9.9;

expr ASSIGN expr

All assignments are pass by value.

mimicked using addresses (explained below).

4.3 Incrementing and Decrementing

The following operators can also be used for variations of assignment:

e += increments the left hand side by the result of the right hand side

e -= decrements the left hand side by the result of the right hand side

The ++ operator to used to increment and the -- operator is used to decrement a value. If the operator
is placed before a value it will be incremented / decremented first, then it will be evaluated. If the operator
is placed following a value, it will be evaluated with its original value and then incremented / decremented.

4.4 Arithmetic Operators

e + can be used for addition

e - can be used for subtraction (on two operands) and negation (on one operand)

e x can be used for multiplication

/ can be used for division

A can be used for exponents

e % can be used for modular division

e & can be used to get the address of an identifier

The grammar for the above operators, in order, is as follows:

| expr
| expr
| expr
| expr
| expr
| expr
| expr
|

PLUS expr
MINUS expr
TIMES expr
DIVIDE expr
EQ expr
EXPO expr
MODULO expr

AMPERSAND expr

4.5 Comparison Operators

e == can be used to evaluate equality

e !=can be used to evaluate inequality

e < can be used to evaluate is the left less than the right

e <= can be used to evaluate is the left less than or equal to the right

e > can be used to evaluate is the left greater than the right

e >= can be used to evaluate is the left greater than or equal to the right

The grammar for the above operators, in order, is as follows:

10

Our language supports pointers and so pass by reference can be

expr EQ expr
expr NEQ expr
expr LT expr
expr LEQ expr
expr GT expr
expr GEQ expr

4.6 Logical Operators
e ! can be used to evaluate the negation of one expression
e && can be used to evaluate logical and

e || can be used to evaluate logical or

The grammar for the above operators, in order, is as follows:

NOT expr
expr AND expr
expr OR expr

4.7 Operator Precedence

We adhere to standard operator precedence rules.

/*
Precedence rules
*/
%nonassoc NOELSE
%nonassoc ELSE
%right ASSIGN
%left OR
%left AND
%left EQ NEQ
%left LT GT LEQ GEQ
%left PLUS MINUS
%left TIMES DIVIDE MODULO
hright EXPO
%right NOT NEG AMPERSAND
%right RBRACKET
%left LBRACKET
%right DOT

4.8 Order of Evaluation

Order of evaluation is dependent on the operator. For example, assignment is right associative, while addition
is left associative. Associativity is indicated in the table above.

5 Statements
Statements include: if, while, for, return, as well all expressions, as explained in the following sections.

That is, statements include all expressions, as well as snippets of code that are used solely for their side
effects.

11

1

2

stmt:

expr SEMI

LBRACE stmt_list RBRACE

RETURN SEMI

RETURN expr SEMI

IF LPAREN expr RPAREN stmt ELSE stmt

IF LPAREN expr RPAREN stmt \Y%prec NOELSE

WHILE LPAREN expr RPAREN stmt

| FOR LPAREN expr_opt SEMI expr SEMI expr_opt RPAREN stmt

5.1 If Statement

The if, else if, else construct will work as expected in other languages. Else clauses match with the closest
corresponding if clause. Thus, their is no ambiguity when it comes to which if-else clauses match.

if (x == 42) {

print ("Gotcha");
}
else if (x > 42) {

print ("Sorry, too big");
}
else {

print ("I\’11 allow it");
}

The grammar that recognizes an if statement is as follows:

IF LPAREN expr RPAREN stmt ELSE stmt
IF LPAREN expr RPAREN stmt %prec NOELSE

5.2 While Statement

The while statement will evaluate in a loop as long as the specified condition in the while statement is true.

/* Below code prints "Hey there" 10 times x/
int x = 0;
while (x < 10) {

print ("Hey there");

R §

}

The grammar that recognizes a while statement is as follows:

WHILE LPAREN expr RPAREN stmt

5.3 For Statement

The for condition will also run in a loop so long as the condition specified in the for statement is true. The
expectation for a for statement is as follows:

for (<initial state>; <test condition>; <step forward>)

Examples are as follows:

/* This will run as long as i is less than 100
i will be incremented on each iteration of the loop */

12

s | for (int i = 0; i < 100; i++) {
4 /* do something */
s |}

7 |/* 1 can also be declared or initialized outside of the for loop */
s | int 1i;

o |for (i = 0; i < 100; i += 2) {

10 /* code block */

11 }

The grammar that recognizes a for statement is as follows:

FOR LPAREN expr_opt SEMI expr SEMI expr_opt RPAREN

5.4 Code Blocks

Blocks are code that is contained within a pair of brackets, { code }, that gets executed within a statement.
For example, any code blocks that follow an if statement will get executed if the if condition is evaluated
as true:

1 | int x = 42;

2 |if (x == 42) {

3 /* the following three lines are executed */
4 print ("Hey") ;

5 SR §

6 print ("Bye");

7|}

The grammar that recognizes a block of code is as follows:

LBRACE stmt RBRACE

Code blocks are used to define scope. Local variables are always given precedence over global variables.

5.5 Return Statement

The return statement is used to exit out of a function and return a value. The return value must be the
same type that is specified by the function deceleration. Return can be used as follows:

1+ |/* The function trivially returns the input int value x*/
2 | func int someValue(int x) {
3 return x;

4 |}

The grammar that recognizes a return statement is as follows:

RETURN SEMI
RETURN expr SEMI

Note that functions can be declared as returning void; this is done as follows:

1£return ;

This adheres to the expectation that all functions return something.

13

6 Functions

Functions allow you to group snippets of code together that can subsequently be called from other parts
of your program, depending on scope. Functions are global, unless they are prepended with the keyword
“private”. While not necessary, it is encouraged that you declare functions before defining them. Functions
are usually declared at the top of the file they’re defined in. Functions that aren’t declared can only be
called after they have been defined.

6.1 Function Declarations

The keyword “func” is used to declare a function. A return type is also required using keyword “return”;
if your function doesn’t return anything then use keyword “void” instead. Functions are declared with or
without parameters; if parameters are used, their types must be specified. A function can be defined with
multiple, different parameters. Though a function can only have one return type, it can also be any data
type, including void.

func int add(int a, int b); /* this functions has two int parameters as input and
returns an int */

func void say_hi(); /* this function doesn’t return anything nor takes any
parameters */

func int isSam(string name, int age); /* this functions has two input parameters,
one of type string and one of type int */

6.2 Function Definitions

Function definitions contain the instructions to be performed when that function is called. The first part of
the syntax is similar to how you declare functions; but curly brackets are used to define what the function
actually does. For example,

func int add(int a, int b); /* declaration */

func int add(int x, int y) /* definition */
{
return x + y;

X

fdecl:
FUNC any_typ ID LPAREN formal_opts_list RPAREN LBRACE vdecl_list stmt_list RBRACE

This snippet of code first declares add, and then defines it. Declaring before defining is best practice.
Importantly, functions can not reference global variables; that is, the only variables they can act on are
formal parameters and local variables. For example:

func int add_to_a(int x); /* declaration */
int a = 10;

func int add_to_a(int x) /* definition */

{

return x + a; /* this is NOT allowed */

}

”

This code is no good because it relies on global variable “a
parameters and/or local variables.

Functions can only reference formal

14

10

11

12

13

14

15

16

17

18

19

6.3 Calling Functions

A function is called using the name of the function along with any parameters it requires. You must supply
a function with the parameters it expects. For example, the following will not work:

func int add(int a, int b); /* declaration */

func int add(int x, int y) /* definition x*/
{

return x + y;

}

add(); /* this is wrong and will not compile because add expects two ints as
parameters */

ID LPAREN actual_opts_list RPAREN { Call($1i, $3)}

Note, calling functions is simply another expression. This means they are guaranteed to return a value
and so can be used as part of other expressions. Functions are first class objects and so can be used anywhere
a normal data type can be used. Of course, a function’s return type must be compatible with the context
it’s being used in. For example, a function that returns a char cannot be used as an actual parameter to a
function that expects an int. Consider the following:

func int add_int(int a, int b); /* declaration */

func int add_int(int x, int y) /* definition */
{

return x + y;

}

func float add_float(float x, float y)
{

return x + y;

}

func int subtract(int x, int y)
{
return x - y;

}

int answer = subtract(add(10,10), 10); /* this is ok */

int answer2 = subtract(add_float(10.0,10.0), 10); /#* this is NOT ok because
subtract expects its first parameter to be an int while add_float returmns a
float */

6.4 Function Parameters

Formal parameters can be any data type. Furthermore, they need not be of the same type. For example,
the following is syntactically fine:

func void speak(int age, string name)

{
print_string ("My name is" + name + " and I am " + age);

b

15

10

11

12

13

14

formal_opts_list:
/* nothing */
| formal_opt

formal_opt:
any_typ_not_void ID
| formal_opt COMMA any_typ_not_void ID

While functions may be defined with multiple formal parameters, that number must be fixed. That is,
functions cannot accept a variable number of arguments. As mentioned above, our language is pass by value.
However, there is explicit support for passing pointers and addresses using * and &.

int* int_pt;
int a = 10;
int_pt = &a;

6.5 Recursive Functions

Functions can be used recursively. Each recursive call results in the creation of a new stack and new set of
local variables. It is up to the programmer to prevent infinite loops.

6.6 Function Test Cases

Functions can be appended with test cases directly in the source code. Most importantly, the test cases
will be compiled into a separate (executable) file. The keyword “with test” is used to define a test case as
illustrated here:

func int add(int a, int b); /* declaration x*/

func int add(int x, int y) /* definition */

{

return x + y;

}

with test {
add (1,2) =
add (-1, 1) =

}

with test {
add (0,0) <= 0;
add (0,0) >= 0;

}

FUNC any_typ ID LPAREN formal_opts_list RPAREN LBRACE vdecl_list stmt_list RBRACE testdeql

testdecl:
WTEST LBRACE stmt_list RBRACE usingdecl

Test cases contain a set of boolean expressions. Multiple boolean expressions can be defined, they just
must be separated with semi-colons. As shown above, you can define separate test cases one after another
too.

Snippets of code can also be used to set up a given test case’s enviornment using the “using” keyword. That
is, “using” is used to define code that is executed right before the test case is run. Consider the following;:

16

10

11

12

10

11

12

13

14

15

16

func void changeAge(struct person temp_person, int age)

{

temp_person.age = age;

3

with test {
sam.age == 11;

3

using {

struct person sam;

sam.age = 10;

changeAge (sam, 11);

}

FUNC any_typ ID LPAREN formal_opts_list RPAREN LBRACE vdecl_list stmt_list RBRACE testded

usingdecl:
USING LBRACE vdecl_list stmt_list RBRACE

“using” is used to create a struct and then call function changeAge; it is setting up the enviornment
for it’s corresponding test. Variables defined in the “using” section of code can safely be referenced in its
corresponding test case as shown. Basically, the code in the “using” section is executed right before the
boolean expressions are evaluated and tested.

The “using” section is optional. As a result some test cases may contain “using” sections and others might
not. As per convention, each “using” section will match up with its closest test case. For, example:

1 usingdecl

func int add(int x, int y) /* definition x*/

{

return x + y;

}

with test { /* variables a, b defined below are NOT in this test case’s scope*/
add (1,2) == 3;
add (-1, 1) ==

}

with test { /* variables a and b ARE in this test case’s scope */
add (a, b) == 20;

©3

}

using {

int a = 10;
int b = 10;
}

As explained in the comments, the “using” section is matched up with the second test case.
Test cases are compiled into a separate program which can subsequently be run. The program will run all
test cases and output appropriate information.

7 Scanner and Parser Code

7.1 scanner.mll

{ open Parser }
(* Regex shorthands *)

let digit = [0’ - ’9°’]
let int = digit+

17

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

let double = int | digit*[’.’]ldigit+ |
let char = ;);[;a; - gz A -)Z;]z::
let string = char+
rule token = parse
[’ > °\t” °\r’ °\n’] { token lexbuf }

| /%" { comment lexbuf 1}

| { LPAREN }

|) { RPAREN }

| { { LBRACE}

[{ RBRACE}

|, { coMMA }

[{ SEMI }

(* Operators *)

| "+ { PLUS }

| v { MINUS }

| " { TIMES }

| "/ { DIVIDE }

| "%" { MODULO }

[{ EXPO }

| =" { ASSIGN }

| ==t { EQ }

| "i=" { NEQ }

] @O { NOT }

| "&&" { AND }

| & { AMPERSAND }

[{ OR }

| Dz { LT }

| e { GT }

| ne=r { LEQ }

| n>=n { GEQ 7}

| [{ LBRACKET }

| "1 { RBRACKET }

oo { DOT }

(* Control flow *)

| "if" { IF }

| "else" { ELSE }

| "return" { RETURN }

| "while" { WHILE }

| "for" { FOR 1}

(* Datatypes *)

n Void n
"struct"
"double"
n int n
n Chal‘ n
"string"
n func n
Pointers
n int * n
"doublex"
n ChaI‘* n
"structx"

n iIlt [] n

|
|
|
|
|
|
|
(*
|
|
|
|
(*
|
| "char [] n

Arrays *)

{ voIiD }
{ STRUCT }
{ DOUBLE }
{ INT }
{ CHAR }
{ STRING }
{ FUNC }
*)
{ INT_PT }
{ DOUBLE_PT }
{ CHAR_PT }
{ STRUCT_PT }

{ INT_ARRAY }
{ CHAR_ARRAY 1}

digit+[’.’]ldigit*

(* White space *)

18

65

66

67

68

69

70

71

72

73

74

75

76

7

78

79

80

81

82

83

84

85

86

87

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

| "double[]" { DOUBLE_ARRAY }
| "new" { NEW }

(* Testing keywords *)

| "with test" { WTEST }

| "using" { USING }

| [:a) - g0 ’A’—’Z’][’a’-’z’ YpI—27Z0 Q2 -2Q) J_)]* as 1lxm { ID(leIl)}
| int as lxm { INT_LITERAL(int_of_string 1xm)}

| double as 1lxm { DOUBLE_LITERAL (1xm) 1}

| char as 1lxm { CHAR_LITERAL(String.get 1lxm 1) }

|

string as lxm { STRING_LITERAL (1lxm) }

| eof { EOF }
| _ as char { raise (Failure ("illegal character "
Char.escaped char))}

(* Whitespace*)

and comment = parse
"x/" { token lexbuf }
| _ { comment lexbuf }

7.2 parser.mly

%{ open Ast %}

/ *
Tokens/terminal symbols
*/
%token LPAREN RPAREN LBRACE RBRACE LBRACKET RBRACKET COMMA SEMI
%token PLUS MINUS TIMES DIVIDE ASSIGN NOT MODULO EXPO AMPERSAND
%token FUNC
%token WTEST USING STRUCT DOT
%token EQ NEQ LT LEQ GT GEQ AND OR
%token INT DOUBLE VOID CHAR STRING
%token INT_PT DOUBLE_PT CHAR_PT STRUCT_PT
%token INT_ARRAY DOUBLE_ARRAY CHAR_ARRAY
%token NEW
%token RETURN IF ELSE WHILE FOR

/ *

Tokens with associated values
*/
%token <int> INT_LITERAL
%token <string> DOUBLE_LITERAL
%token <char> CHAR_LITERAL
%token <string> STRING_LITERAL
%token <string> ID
%token EOF

/ *

Precedence rules
*/
%nonassoc NOELSE
%nonassoc ELSE

19

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

%right ASSIGN

%left OR

%left AND

%left EQ NEQ

%left LT GT LEQ GEQ
%left PLUS MINUS

%left TIMES DIVIDE MODULO
%right EXPO

%right NOT NEG AMPERSAND
%right RBRACKET

%left LBRACKET

%right DOT

/ *
Start symbol
*/

/start program
/ *
Returns AST of type program

*/

%type<Ast.program> program

Y

/*
Use List.rev on any rule that builds up a list in reverse.
reverse
for efficiency reasons

*/
program: decls EOF { List.rev $1 }

decls:
/* nothing x*/ {03
| decls fdecl { Func($2)::%1 }
| decls vdecl { Var($2)::$1 }
| decls sdecl { Struct($2)::%1 }
| decls stmt { Stmt($2)::$1 }

prim_typ:
| STRING { String }
| DOUBLE { Double }
| INT { Int }
| CHAR { Char}
void_typ:
| VOID { Void }

pointer_typ:
| INT_PT { Primitive(Int) 1}
| CHAR_PT { Primitive(Char) }
| STRUCT_PT ID { Struct_typ($2) }

struct_typ:
| STRUCT ID { $2 }

20

Lists are built in

920

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

130

131

132

133

134

136

137

138

139

140

141

142

143

144

145

array_typ:
INT_ARRAY {

any_typ:
prim_typ {
struct_typ
pointer_typ
void_typ A

|
|
|
| array_typ {

Int }

Primitive ($1) }
{ Struct_typ($1) }

{ Pointer_typ($1) }
Primitive ($1) 1}
Array_typ($1) }

any_typ_not_void:
prim_typ
| struct_typ
| pointer_typ

{ Primitive($1) }
{ Struct_typ($1) }
{ Pointer_typ($1) 1}

| array_typ { Array_typ($1) }

/ *

Rules for function syntax

*/

fdecl:
FUNC any_typ ID LPAREN formal_opts_list RPAREN LBRACE
RBRACE {{
typ = $2; fname = $3; formals = $5; vdecls = List.rev
$9; tests = {exprs = []; wusing = { stmts = [1 }} }}

| FUNC any_typ ID LPAREN formal_opts_list RPAREN LBRACE
RBRACE testdecl {{
typ = $2; fname = $3; formals = $5; vdecls = List.rev
$9; tests = {exprs = []; wusing = { stmts = [1 }} }}
| FUNC any_typ ID LPAREN formal_opts_list RPAREN LBRACE

RBRACE testdecl usingdecl {{
typ = $2; fname = $3; formals = $5; vdecls = List.rev
$9; tests = {exprs = []; wusing = {stmts = [] }} }}

/ *

"with test" rule

*/

testdecl:

WTEST LBRACE stmt_list RBRACE usingdecl { }

/%
"using"
*/
usingdecl:

USING LBRACE vdecl_list stmt_list RBRACE { }

rule

/ *
Formal parameter rules
*/
formal_opts_list:
/* nothing x/
| formal_opt { $1 %

{0}

formal_opt:
any_typ_not_void ID {0($1,$2)1}
| formal_opt COMMA any_typ_not_void ID

actual_opts_list:

21

{($3,8$4) :: 81

vdecl_list
$8; body =
vdecl_1list
$8; body =
vdecl_list

$8; body =

}

stmt_list

List.rev

stmt_list

List.rev

stmt_list

List.rev

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

/* mnothing x/ { [1 }
| actual_opt { $1 }

actual_opt:
expr { [$1]1 }
| actual_opt COMMA expr {$3::$1}

/ *
Rule for declaring a list of variables, including variables of type struct x
*/
vdecl_list:
/* nothing =/ { [1 }
| vdecl_list vdecl { $2::$1 }

vdecl:
any_typ_not_void ID SEMI { ($1, $2) }

/%
Rule for defining a struct
*/
sdecl:
STRUCT ID ASSIGN LBRACE vdecl_1list RBRACE SEMI {{
sname = $2; attributes = $5 }}

stmt_list:
/* mnothing */ { [1 }
| stmt_list stmt { $2::$1 }

/%
Rule for statements. Statements include expressions
*/
stmt :
expr SEMI { Expr $1 }
| LBRACE stmt_list RBRACE { Block(List.rev $2) }
| RETURN SEMI { Return Noexpr}
| RETURN expr SEMI { Return $2 }
| IF LPAREN expr RPAREN stmt ELSE stmt { 1£($3, $5, $7) }
| IF LPAREN expr RPAREN stmt %prec NOELSE { If($3, $5, Block([1)
)}
| WHILE LPAREN expr RPAREN stmt { While($3, $5) }
| FOR LPAREN expr_opt SEMI expr SEMI expr_opt RPAREN stmt { For($3, $5, $7,
$9) ¥
/*
Rule for building expressions
*/
expr:
INT_LITERAL { Lit($1)}
ID { Id($1) }

|

| expr PLUS expr { Binop($1, Add, $3) }

| expr MINUS expr { Binop($1, Sub, $3) }
| expr TIMES expr { Binop($1, Mult, $3)}
| expr DIVIDE expr { Binop($1, Div, $3)}

| expr EQ expr { Binop($1, Equal, $3)}

| expr EXPO expr { Binop($1, Exp, $3)1}

| expr MODULO expr { Binop($1, Mod, $3)}
| expr NEQ expr { Binop($1, Neq, $3)}

22

expr DOT expr

NEW STRUCT 1ID

expr_opt:

expr LBRACKET INT_LITERAL RBRACKET
NEW prim_typ LBRACKET INT_LITERAL RBRACKET { Array_create($4,

ID LPAREN actual_opts_list RPAREN

{ Struct_Access($1, $3)}

{ Struct_create($3)}
{ call($1,

| expr LT expr { Binop($1, Less, $3)}
| expr LEQ expr { Binop($1, Leq, $3)}
| expr GT expr { Binop($1, Greater, $3)1}
| expr GEQ expr { Binop($1, Geq, $3)1}
| expr AND expr { Binop($1, And, $3)}
| expr OR expr { Binop($1, Or, $3)}

| NOT expr { Unop(Not, $2) }

| AMPERSAND expr { Unop(Addr, $2) }

| expr ASSIGN expr { Assign($1, $3) 1}

|

|

|

|

|

$3)}

/* nothing */ { Noexpr }

{ %1 3}

| expr

{ Array_access($1,

$3) 1}
$2) }

23

