
	

	 	

DaMPL	
Language	Reference	Manual	

Bernardo	Abreu	 bd2440	

Felipe	Rocha	 flt2107	

Henrique	Grando	 hp2409	

Hugo	Sousa	 ha2398	

	

	 2	

Contents	
	

1. Getting Started .. 4
2. Syntax Notations ... 4
3. Lexical Conventions .. 4
3.1. Line Structure .. 4
3.1.1. Logical Lines ... 4
3.1.2. Physical Lines ... 4
3.1.3. Comments ... 4
3.1.4. Blank Lines .. 4
3.1.5. Whitespace between tokens ... 5
3.2. Identifiers and Keywords ... 5
3.2.1. Identifiers ... 5
3.2.2. Keywords .. 5
3.3. Literals ... 5
3.3.1. String Literals .. 5
3.3.2. Integer Literals .. 5
3.3.3. Floating Point Literals .. 5
3.3.4. Boolean Literals .. 5
4. Statements .. 6
5. Expressions ... 6
5.1. primary-expression .. 6
5.2. Postfix-expression ... 6
5.2.1. Reference operator ... 7
5.3. unary-expression ... 7
5.3.1. not operator ... 7
5.3.2. - operator ... 7
5.4. multiplicative-operators ... 7
5.4.1. *, / and % operators .. 7
5.5. additive-operators ... 7
5.5.1. + and – operators .. 8
5.6. Relational operators .. 8
5.6.1. <, >, <= and >= operators ... 8
5.7. Equality operator ... 8
5.7.1. == operator .. 8
5.8. AND operator .. 8
5.8.1. and operator .. 9
5.9. OR operator .. 9
5.9.1. or operator ... 9
5.10. Assignment operator ... 9
5.10.1. = operator .. 9
6. Variables ... 9
6.1. Types ... 9
6.2. Conversion .. 10
7. Tuples ... 10

	 3	

8. Control Structures ... 11
8.1. If .. 11
8.2. While ... 11
8.3. For ... 12
9. Functions ... 12
9.1. Definitions ... 12
9.2. Calls .. 13
10. Arrays .. 14
11. Tables ... 14
12. Dictionaries ... 15
13. Include ... 16
14. Program ... 16

	 4	

1. Getting Started	
DaMPL (Data Manipulation Programming Language) is a scripting language designed

for high-level applications that require easy and robust data manipulation. Its features aim to
define and manipulate information (either defined by the user or obtained from external sources)
in a clear and concise way.	

	
In this reference manual the reader is able to find a detailed description of the structure

of DaMPL programs and explanations the main points of the language's features.	
	
Within the language, there are many features to input and output differently structures

data-types, as well as particular functions of the standard modules that manipulate specific file
extensions, such as ".csv" and ".xml", which are well known and extensively used files to store
data.	

	
DaMPL is implemented as translated to C (for more details, see the GNU C Reference

Manual) language, using gcc. As a constantly evolving language, the implementation details are
likely to change, therefore, the main focus on this manual is to provide a complete
documentation.	

	

2. Syntax Notations	
For the next items of this manual, syntactic notations will be written in italic, and literal

word and characters will be written as regular text. A definition of a new syntactic notation will
be as follows:	

notation-name:	
<possibility-1>	
…	
<possibility-n>	
	

3. Lexical Conventions	
3.1. Line Structure	

A program in DaMPL is divided into a number of logical lines.	

3.1.1. Logical Lines	
The end of a logical line is represented by the token SEMICOLON. A logical line is

constructed from one or more physical lines.	

3.1.2. Physical Lines	
A physical line is a sequence of characters terminated by an end-of-line sequence.	

3.1.3. Comments	
There are one-line and multi-line comments in DaMPL. One-line comments start with a

sequence of two bar characters (//).	
Multi-line comments start with a sequence of a slash character followed by an asterisk

character (/*) and end with a sequence of an asterisk character followed by a slash character
(*/).	

3.1.4. Blank Lines	
A physical line consisting of only spaces, tabs, formfeeds and comments are ignored.	

	 5	

3.1.5. Whitespace between tokens	
The whitespace characters space, tab and formfeed can be used interchangeably to

separate tokens.	
	
	

3.2. Identifiers and Keywords	
3.2.1. Identifiers	
An identifier in DaMPL can be defined as a sequence of letters and digits. It starts by a

letter or underscore. Upper and Lower case letters are different.	

3.2.2. Keywords	
The following identifiers are keywords, or reserved words, of the language.	
	
and	 for	 include	 tuple	

break	 fun	 not	 while	
continue	 if	 or	 	

else	 in	 return	 	
	

3.3. Literals	
Literals are notations for representing constant values.	
literal:	

string-literal	
integer-literal	
floating-point-literal	
boolean-literal	
	

3.3.1. String Literals	
A string literal is a sequence of characters surrounded by double quotes, as in " . . . ".	
	

3.3.2. Integer Literals	
A integer literal is a sequence of digits.	
	

3.3.3. Floating Point Literals	
A floating literal consists of an integer part, a decimal point, a fraction part, an e or E,

and an optionally signed integer exponent. The integer and fraction parts both consist of a

sequence of digits. Either the integer part, or the fraction part (not both) may be missing; either

the decimal point or the e/E and the exponent (not both) may be missing. 	

3.3.4. Boolean Literals	

A boolean literal is described by the following definition.	
boolean-literal:	

True	
False	

	 6	

	
	

4. Statements	
statement:	

lhs = statement;	
expression;	
control-structure	
fun-call	
	

statements:	
statement	
statement statements	

	

5. Expressions	
The precedence of expression operators is the same as the order of the subsections

within this section. Operators in the same subsection have the same precedence. The
associativity (left or right) is specified for each operator within a subsection. An expression is
defined as follows:	

expression:	
primary-expression	
unary-expression	
binary-expression	

5.1. primary-expression	
A primary expression is a literal, an identifier or a parenthesized expression.	
	
primary-expression:	

literal	
identifier	
(expression)	
	

5.2. Postfix-expression	
The operators in a postfix expression group left to right	
	
postfix-expression:	

primary-expression	
postfix-expression[expression]	
postfix-expression[<empty>]	
postfix-expression{expression}	
postfix-expression{<empty>}	
postfix-expression.identifier	
postfix-expression(argument-expression-list)	
	

argument-expression-list:	
expression	
expression, argument-expression-list	

	 7	

	

5.2.1. Reference operator	
Dictionaries, Tables and Arrays elements can be accessed through a postfix-

expression[expression], where postfix-expression: identifier for any of these types.	
	
	

	

5.3. unary-expression	
	
A unary expression group right to left.	
	
unary-expression:	

unop primary-expression	
	
unop: one of	

not - 	
	

5.3.1. not operator
The operand must have a boolean type. It will return the negated value.	
	

5.3.2. - operator
The operand must have an integer type. Change the sign of the integer literal	

	

5.4. multiplicative-operators
	
The multiplicative operators *, / and % group left-to-right.	
	
multiplicative-expression:	

expression	
multiplicative-expression * expression	
multiplicative-expression / expression	
multiplicative-expression % expression	
	

5.4.1. *, / and % operators
The operands for all these operators must have arithmetic type (int or float).	
The * returns the multiplication result in the equivalent arithmetic type of the operands. In

case of the operands being of different types, the int gets promoted to float.	
The / returns the result of the division as a float. The right operand can't be zero.	
The % returns the remainder of the division as an int. The right operand can't be zero.	

	

5.5. additive-operators
	
The additive operators + and - group left-right.	
	

	 8	

additive-expression:	
multiplicative-expression	
additive-expression + multiplicative-expression	
additive-expression - multiplicative-expression	

	

5.5.1. + and – operators
The operands for these operators must have arithmetic type. In case the operands differ

in type, the int is promoted to float.	
The + returns the sum result in the equivalent arithmetic type of the operands.	
The – returns the subtraction result in the equivalent arithmetic of the operands.	
	
	

5.6. Relational operators	
The relational operators group left-to-right.	
	

relational-expression:	
additive-expression	
relational-expression < additive-expression	
relational-expression > additive-expression	
relational-expression <= additive-expression	
relational-expression >= additive-expression	
	

5.6.1. <, >, <= and >= operators
The operands for these operators must have arithmetic type. In case the

operands differ in type, the int is promoted to float.	
The < operator returns true if the left operand is less than the right operand

and false if not.	
The > operator returns true if the left operand is greater than the right

operand and false if not.	
The <= operator returns true if the left operand is less than or equal to the

right operand and false if not.	
The >= operator returns true if the left operand is greater than or equal to

the right operand and false if not.	
	

5.7. Equality operator	
	

Equality-expression:	
Relational-expression	
Equality-expression == relational-expression	
	

5.7.1. == operator	
	

The == operator tests if both operands are equal, i.e., have the same value. 	
	

5.8. AND operator	

	 9	

The and operator groups left-to-right.	
	

and-expression:	
equality-expression	
and-expression and equality-expression	

	

5.8.1. and operator
	

The operands for the and operator must be of type boolean. 	
The and operator returns a boolean value: true if both operands are true; false otherwise.	
	

5.9. OR operator	
The or operator groups left-to-right.	

or-expression:	
and-expression	
or-expression or and-expression	

	

5.9.1. or operator
	

The operands for the or operator must be of type boolean.	
The or operator returns a boolean value: true if at least one of the operands is true;	
false otherwise.	
	

5.10. Assignment operator	
The = operator groups right-to-left.	

assignment-expression:	
or-expression	
postfix-expression = assignment-expression	

	

5.10.1. = operator
	

The assignment operator expects the operands' types to be the same. 	
The assignment operator returns the right operand value. 	
	

6. Variables	
DaMPL is not a typed language, i.e. you don't have to declare a variable along with its

type, since it will be determined through type inference. To each variable is associated a value,
an underlying type and an id (that is related to the position in memory where the variable data is
stored). 	

Variable names (notation: identifier) must start with a lowercase letter or an underscore,
and may contain letters, numbers and underscore.	

	

6.1. Types	

	 10	

A type determines how the value stored in a variable is going to be interpreted. The
types in DaMPL are the following: int, float, str, bool.	
	

6.2. Conversion	
Variables can be converted from one type to another using the constructors (notation:

fun-cal) offered for each type:	
	
int (identifier)	
float (identifier)	
str (identifier)	
bool (identifier)	
	

7. Tuples	
Tuples are associations of values, where each item has an label name. These are useful

to deal with data rows as we'll see later on this manual.	
A tuple name (notation: tuple-identifier) must always begin with an uppercase letter,

and may contains characters or numbers.	
Tuple labels (notation: tuple-label) must always begin with a lowercase letter, and may

contain letters, numbers and underscore.	
	
	
tuple-definition:	

tuple tuple-identifier{ tuple-label-list };	
	

tuple-expression:	
tuple-identifier{ expression-list }	
	

tuple-item-identifier:	
identifier$tuple-label	
	

Where	
tuple-label-list:	

tuple-label	
tuple-label, tuple-label-list	
	

expression-list:	
expression	
expression, expression-list	

	
Note: tuple-item-identifier can be used also on the LHS of an assignment	
	
Example	
	
// This defines a new tuple name	
tuple Person{name,age};	
	
// This instantiates one variable as a tuple Person	

	 11	

a = Person;	
a$name = "Steve";	
a$age = 30;	
	
// Or using a simpler notation	
b = Person{"John", 23};	
	
Note that using a tuple does not implies any variable type assumption. The following line

could be added to the example above.	
	
c = Person{1, 1.2};	
	

8. Control Structures	
control-structure:	

if	
while	
for	

	
iterable:	

identifier	
string-expression	
array-expression	
table-expression	
dict-expression	

	
iterator_variable:	

identifier	
	

	

8.1. If	
If statements are used for conditional execution and are defined as follows:	
	
if-else:	

if binary-expression { statements }	
if binary-expression { statements } else { statements }	
if binary-expression { statements } else if-else	

	
It evaluates the binary-expression and executes the first group of statements if this

binary-expression is true. If the binary-expression is false and the else exists, the statements or

if-else that follows the else are executed.	

	

8.2. While	
While statements are used for repeated execution of a statement as long as a binary

expression is true. They are defined as follows:	
	

	 12	

while:	
while binary-expression { loop-statements }	
	

loop-statements:	
statements	
break;	
continue;	
	

This repeatedly tests the expression and, if it is true, executes the loop-statements. If the

expression is false, the loop terminates.	

A break executed in the loop-statements terminates the loop, while a continue executed

in it skips the rest of the statements and goes back to testing the expression.	

	

8.3. For	
For statements are used to iterate through a iterable. They are defined as follows:	
	
for:	

for iterator-variable in iterable { loop-statements }	
	
loop-statements:	

statements	
break;	
continue;	
	

For each item provided by the iterable, this item is assigned to the iterator-variable using

the standard rules for assignments, and then the loop-statements are executed. When the items

are exhausted, which means that the for has gone through all the items on the iterable, the loop

terminates.	

A break statement executed in loop-statements terminates the loop, while a continue

statement executed in it skips the rest of the suite and continues with the next item, or

terminates the loop if there was no next item.	

	

9. Functions	
9.1. Definitions	

DaMPL allows the user to define their own functions in order to manipulate data
structures in the way that best fits their needs.	

Function names (which also use notation identifier, just like variable names)
must start with a lowercase character or an underscore, and may contain characters,
numbers and underscore.	

In order to start a new function definition, the user needs to use the keyword fun,
as shown below:	
	
fun-def:	

	 13	

fun identifier(parameter-def-list) { function-body }	
	
Where	
parameter-def-list:	

identifier	
identifier, parameter-def-list	
	

And function-body is a sequence of logical lines, the last one being usually (but not
mandatorily) a return statement.	
	
function-body:	

statements	
return expression;	
	

The return keyword tells the function what is the expression that will be evaluated and
returned to the function caller. 	
	
Examples:	
	
fun myFunction123(arg1, arg2) {	

return (arg1 + arg2);	
}	
	
fun anotherFunction1() {	

print("Hello World");	
}	
	

9.2. Calls	
For calling a function, the user simply has to use the function name and the

desired arguments.	
	

fun-call:	
identifier(parameter-call-list)	

	
Where	
parameter-call-list:	

expression	
optional-parameter-call-list	
expression, parameter-call-list	

	
optional-parameter-call-list:	

identifier = expression	
identifier = expression, optional-parameter-call-list	
	
When a function is called, the parameter call list will try to be matched with the

parameter definition list. Additionally, in case there are more parameters in the function
calling than in the function definition, the extra parameters will be stored in a special
variable called _opt which is of type Dictionary (see Dictionaries). These extra

	 14	

parameters must obligatorily be specified with the = token, and their identifiers will be
used to index the _opt dictionary. Note that _opt exists for every function, whether it
uses extra parameters or not. In case it doesn't, _opt will be empty.	

	

10. Arrays	
Arrays holds values of same-type (allowed internal types: integer, floating point,

boolean or string), which can be accessed by its zero-indexed positions.	
	
array-expression:	

[array-items]	
	
array-items:	

<empty>	
integer-items	
floating-point-items	
boolean-items	
string-items	

	
<x>-items:	

<x>-literal	
<x>-literal, <x>-items	
	

	
Example:	
	
a = [];	
a[] = 1; // This adds 1 to the end of a	
a[] = 2;	
a[] = 3;	
a[] = 4;	
	
// The following would have the same result	
b = [1,2,3,4];	
	
b[0]; //equals 1	
b[1:3]; // equals [2,3]	
	
	

11. Tables	
Tables holds same-tuple-label instances. To define a table the user needs to specify the

tuple that defines the structure of the table. 	
	
table-instantiation:	

 tuple-identifier[]	
	

table-indexing:	
identifier$tuple-label	

	 15	

	
In order to add an element (tuple) to the table, we use brackets, as follows:	
	
Example:	
	
tuple Foo{fa,fb,fs}; //defines a tuple Foo	
	
a = Foo{1,2,"abc"}; //Creates a tuple a	
b = Foo{2,3,"abd"}; //Creates a tuple b	
	
t = Foo[]; //Instantiates a table that stores Foo tuples	
	
t[] = a; //adds tuple a to table t	
t[] = b; //adds tuple b to table t	
	
t$fa; //returns all fa elements in the tuples stored ([1,2])	
	
t[0]; //returns the first tuple of the table ({1,2,"abc"})	
	

12. Dictionaries	
Dictionaries are data-types that works as maps. They are basically lists of data that can

be indexed using different data-types. The item used to index the list is called key and the
returned data after the indexing is called value. Therefore, we can see a dictionary as a list of
pairs key, value. 	

Keys can be integer, floating point or string. Values can be any basic variable type,
arrays or dictionaries.	

A dictionary is defined as shown below:	
	
dict-expression:	

{ }	
{ dict-items }	
	

dict-key:	
integer-literal	
floating-point-literal	
string-literal	

	
dict-value:	

identifier	
expression	
array-expression	
dict-expression	
	

dict-items:	
dict-key:dict-value, dict-items	
dict-key:dict-value	
	

Example:	

	 16	

	
d = {"a":1, "b":2, 20:{1:2, 1.1:4}};	
	
d["a"]; //equals 1	
	
d[] = 44;	
	
d[0]; //equals 44	
	

	

13. Include	
A file of DaMPL code can gain access to another file with a include statement. This

statement allows for the first file to access the content of the second one as if its code were
present on the same file as the first.	
	

include-statement:	
include string-expression; 	

	
	

14. Program	
	

program-statements:	
program-statement	
program-statements	
	

program-statement:	
statement	
include-statement	

	
 	

	

