A Language with Beautiful Syntax
(ALBS)

| anquage Reference Manual

Programming Languages and Translators Spring 2016
March 5, 2016

Name UNI Role

Brennan Wallace bgw2119 Language Guru

Suhani Singhal $s4925 Product Manager

Table of Contents

1. Introduction
2. Lexical Conventions
2.1. Tokens
2.2. Comments
2.3. Identifiers
2.4. Keywords
2.5. Constants
2.6. Integer literal
2.7. Float literal
2.8. Character literal
2.9. Boolean literal
2.10. String literal
3. Expressions
3.1. Infix Expressions
3.2. Operators
3.3. Unary Operators
3.4. Logical Binary Operators
3.5. Comparison Operators
3.6. Other Operators
4. Data Types
4.1. Overview
4.2. Integer
4.3. Character
44. Float
45. List
4.6. Boolean
4.7. Void
4.8. Function
5. Scope

6. Control Flow

6.1. Program Entry and Exit
6.2. Expression statements and blocks
6.3. If-Else
6.4. Else-If
7. Punctuation
7.1. Semicolon
7.2. Colon
7.3. Curly Braces
7.4. White Space
7.5. Parentheses
7.6. Square Brackets

10.

Standard Library

8.1.
8.2.
8.3.
8.4.
8.5.
8.6.
8.7.
8.8.
8.9.

I/O

List Operations

Length of List

Head of List

Tail of List

Get element at an index

Add an element to a list at an (optional) index
LeftReduce

RightReduce

Language Features

9.1. Single assignment

9.2. First Class Functions
9.3. Higher Order Functions
9.4. Closures

9.5. Type casting
References

1. Introduction

This manual describes the ALBS language - a functional language with immutable variables and
C-like syntax, that is compiled down to LLVM.

Throughout this manual, sample code is written in monospace font, as
this is.

2. Lexical Conventions
21. Tokens

There are four types of tokens: keywords, identifiers, constants, operators, and
punctuation. Blanks, horizontal and vertical tabs, newlines, formfeeds and
comments as described below (collectively know as white space) are ignored
except as they separate tokens. Some white space is required to separate
otherwise adjacent identifiers, keywords, and constants.

2.2. Comments

Comments are single line and the line must start with two ‘/’ characters with no
space between them though any amount of space can be before them as well as
code that is evaluated normally. Anything inside a comment is ignored for the
purposing of compilation and create if the abstract syntax tree.

To lllustrate:

return 0; //this is a comment //this too
this is not a comment
/ neither 1is this

2.3. Identifiers

Identifiers are sequences of alphanumeric characters and underscores that are
largely used as variable names. A regular expression that can be used to define
themis [‘a’-"z" [0"-"9" |’ ']+

24. Keywords

ALBS has a set of reserved keywords and function names that cannot be used
as identifiers for variables. This is a list of all reserved keywords:

Data Types Control Flow I/0 functions List functions Other
bin rtn print head true
flt if input tail false
int else rightReduce
chr main leftReduce
void listLength

listGet
listAdd
2.5. Constants

2.51. Integer literal

Integer literals are a sequence of numerals without decimal point. Not having a
decimal point is crucial as this distinguishes them from doubles. A hyphen may
precede the numerals to indicate that the value is negative. Note: -0 is will be
converted to O during parsing. A regular expression for ints can be defined as

follows:

[\01_191]+

An integer literal made of multiple zeros without a non-zero numeral is converted
to a single 0 during parsing. An integer literal with zeros before (to the left) of the
first non-zero is equivalent to an integer literal of the same sequence without the

preceding 0’s.

To illustrate:

int zero = 0000;//zero is 0

int positive one =
int negative one

2.5.2. Float literal

1;//positive one is 1
-00001;//negative one is -1

Unlike integers floats can and are required to have a single decimal point
somewhere in the sequence of digits but are otherwise similar. A regular
expression for floats can be defined as follows:

—2 ([0 =9 14 L[N0 =9 R [0 =9 R L[N0 =797 T +)

If one side of the decimal has no characters it is equivalent to a single 0 being
there. An float literal made of multiple zeros without a non-zero numeral is
converted to a single 0 during parsing. An float literal with zeros before (to the
left) of the first non-zero is equivalent to a float literal of the same sequence
without the preceding 0’s.

To illustrate:

int zero = 0000;//zero is 0

1.100;//equivalent to 1.1
-00001.10;//equivalent to -1.1

int positive one point one

int negative one point one

2.5.3. Character literal

Character literals use a single quote before and after the character. Characters
generally represent themselves (‘a’ is the literal for the character representing the
letter a). However, the following table shows how some characters are defined
using a backslash and another character. This table largely pulled from The C
Programming Language 2nd Edition as we feel it is important to support most of
the same “special” characters in the same way.

Character Literal w/Quotes
newline ‘\n’
horizontal tab “\t’
vertical tab v’
backspace “\b’
carriage return “\r’
backslash A
single quote \
double quote “\

3.

2.6.

To lllustrate:

chr a = ‘a’;

chr newline = ‘\n’;

//both of these set the variables
//to their namesake values

rtn ‘c’;

//shows a non assignment usage

2.54. Boolean literal

Boolean literals come in the form of two reserved keywords “true” and “false”
(without the quotes).

To lllustrate:

rtn true == true; //returns true
rtn true != false; //returns true
rtn false == false; //returns true

rtn true; //returns true

String literal

String literals are declared using a sequence of characters (without single
quotes) that start and end with a double quote. Such literals are converted into
lists of characters where the order of the list reflects the string literal. As such ,
string literals have the type of <char> which is a list of characters.

To lllustrate:

<char> exl = “example”;

<char> ex2 = [‘e’ 'x", "a’, 'm’", '"p’", ‘1', ‘e’];
exl == ex2; // returns true

Expressions

3.1.

Infix Expressions

Operators in expressions are evaluated in according to the follow precedence table
where a lower number is evaluated before a higher number and on a tie are evaluated
as according to their associativity.

Precedence | Operator (Symbols) | Operator (Names) Associativity

({expression}) Parentheses Left to Right
({type name}) Cast Left to Right
- Negation Right to Left
! Not Right to Left
* Multiplication Left to Right
/ Modulo Left to Right
% Remainder Left to Right
+ Addition Left to Right
- Multiplication Left to Right
< Less than Left to Right
<= Less than or equal to Left to Right
> Greater than Left to Right
>= Greater than or equal to Left to Right
== Equal Left to Right
I= Not Equal Left to Right
& And Left to right

| Or Left to right

= Assign Right to Left

3.2. Operators

Operator tokens indicate operations perform an action that takes the value of one or two
operands (a literal or variable) and returns a new value. There are two category types
number of operators (unary or binary) and output types.

The following tables describe the operators. Capital letters represent appropriate
variables or literals. Descriptions in curly brackets should not be taken literally.

3.21. Unary Operators

Name Notation Description
Negation -A Can be applied to a float or an integer and
returns a new float or integer that as a value
equal to the original multiplied by -1.
Not 1A Can be applied to a boolean and returns the
opposite value of that boolean.

Cast

({Type to Convert
To}) A

Takes a value and returns a new value of a
different type as according to the following table.
Note that if a cast is not listed in the table it is not
permitted and attempting to do so will return an
error.

3.2.2.

Conversion Chart

Input Type

Output Type

Description

int

float

Converts an integer to a float.

float

int

Converts a float to an integer. Fractional amounts
are truncated.

char

int

Characters are converted to ints that are equal to
their ASCII codes.

int

char

Ints are converted to characters that have a
ASCII code equal to that int. If there is no such
ASCII character an exception is thrown.

You can

also convert lists from one type to another.

Input Type

Output Type

Description

<int>

<float>

Converts an integer list to a float list.

<float>

<int>

Converts a float list to an integer list. Fractional
amounts are truncated.

<char>

<int>

Character list is converted to integer list that are
equivalent in their ASCII codes.

<int>

<char>

Integer lists are converted to character lists
having the ASCII code equal to that int. If there is
no such ASCII character an exception is thrown.

3.2.3.

Arithmetic Binary Operator

Name

Notation

Description

Addition

A+B

Can be applied to two floats or two integers and
returns a new float or integer (output type is the

same as the input types) that has a value
approximately equal to mathematical sum of the
two inputs. Output if overflow occurs is not
guaranteed.

Subtraction

Can be applied to two floats or two integers and
returns a new float or integer (output type is the
same as the input types) that has a value
approximately equal to mathematical difference
of the two inputs. Output if overflow occurs is not
guaranteed.

Multiplication

A'B

Can be applied to two floats or two integers and
returns a new float or integer (output type is the
same as the input types) that has a value
approximately equal to mathematical product of
the two inputs. Output if overflow occurs is not
guaranteed.

Division

A/B

Can be applied to two floats or two integers and
returns a new float or integer (output type is the
same as the input types) that has a value
approximately equal to mathematical quotient of
dividing the two inputs (A divided by B). The
value is truncated. Output if overflow occurs is
not guaranteed.

Modulo

A%B

Can be applied to two floats or two integers and
returns a new float or integer (output type is the
same as the input types) that has a value
approximately equal to mathematical remainder
of dividing the two inputs (A divided by B). Output
if overflow occurs is not guaranteed.

3.24.

Logical Binary Operators

Name Notation

Description

And A&B

Takes two booleans and returns true if both operands are true.

Or A|B

Takes two booleans and returns true if at least one operand is true.

3.2.5. Comparison Operators
Name Notation Description
Equals A== Takes two operands of the same type and returns true if
they are identical in value and false otherwise.
Not Equals Al=B Takes two operands of the same type and returns false if
they are identical in value and true otherwise.
Less than A<B Takes two operands of the same type. Returns true if they
are floats and integers and A is mathematically less than B.
Returns true if they are characters and A precedes B in the
ASCII character table. Otherwise false is returned.
.Greater than A>B Takes two operands of the same type. Returns true if they
are floats and integers and A is mathematically greater than
B. Returns true if they are characters and A follows B in the
ASCII character table. Otherwise returns false.
Less than or A <=B | Takes two operands of the same type. Returns false if they
equal to are floats and integers and A is mathematically greater than
B. Returns false if they are characters and A follows B in the
ASCII character table. Otherwise returns true.
.Greater than or A >=B | Takes two operands of the same type. Returns false if they
equal to are floats and integers and A is mathematically less than B.
Returns false if they are characters and A precedes B in the
ASCII character table. Otherwise returns true.
3.2.6. Other Operators
Name Notation Description
Parentheses ({Some Expression}) | Used for precedence control as what inside
parentheses will be evaluated first.
Assign A = {literal, variable, | Assigns the value of the right side of the = sign

or an expression of | to the variable on the left side. If types don't
the type of A}; match an exception is thrown. If the variable on

the left already has a value an exception is
thrown.

4. Data Types

Type Syntax Details
integer int 32-bit, 2’s complement
character chr 8-bit, Ascii
float flt 32-bit, IEEE 754
list <type> Single Type, Immutable
boolean bin True or False only
void void non-existent value
function {paramType paramType ... paramType : First Class
returnType}
functionName = paramName paramName
... paramName

41. Overview

There are four fairly standard data types that behave pretty much the same as
they do in other languages. These types are integer, character, float and
boolean. Additionally ALBS treats functions as first class data types in that they
can returned and passed to other functions. Lists are integral enough to
functional programming they are considered data types as well. All of the data
types can be set to null.

4.2. Integer

Integers are represented with 32-bit memory chunks in 2’s complement. This
gives an maximum and minimum of 2,147,483,647 and -2,147,483,648
respectively. The standard arithmetic operators (+,-,/,*) can be applied to
integers. Truncation is used to calculate the result of division if a non
mathematical integer would be the mathematical result. For example 7/2 ==
would return true.

int x 2;

7/2; // value of y is 3

int y

43.

44,

4.5.

Character

We support the ASCII character set in using a byte of memory for each
character. We use the system as ASCIl where ASCIl characters have a
corresponding number and it is this number the the byte is set to (unsigned).

chr x = ‘a’;

chr vy = ‘7',

print x;//prints x

print y;//prints 7

int z = x + y; //adds 97 and 7. prints 104

Float

They are represented using 32 bits as according to the IEEE 754 standard. Each
float must include a decimal point and have digits before, after, or both. In terms

of regular expressions this can be represented as ['0’-’9’]+ " [0-9’]* | [0~
I [0-9 T+

flt x = 0.1;

flt y = .2;

flt z = 1.;

List

A list can be of type int, chr, bin, flt or a function. They are represented as
<type>. Every element in the list must be of the same type.

<int> intList = [1,2];

A character list can be declared as:
<chr> 1listl [‘h’,"1i"]1;

<chr> list?2 “hello”;

<chr> 1ist3 list2 + ™ world”;

Lists are multidimensional, with the number of <> representing the list depth.
<<chr>> stringl =
[[\hl, IeI, llI, IlI, ’O,], [IWI, ,O,, IrI, IlI, Idl]];

//2 dimensional list of char

<<chr>> string2= [“hello”, “world”];
//2 dimensional list of char

4.6.

4.7.

4.38.

A list of functions must have functions with the same signature. A list of functions
can be passed values in order to return another list generated by applying the
functions to the values passed.
{int int : int} add = x y [

rtn x + y;

]
{int int : int} multiply = x y [
rtn x * y;

<{int int : int}> listOfFunctions = [add, multiply];

<int> intList = listOfFunctions 1 2;
//passes 1,2 to all functions. Returns a list of integers

print intList;//prints [3,2]

Boolean

A boolean can be true or false.
bln x = true;
bln yv = false;

print x & y; //prints false

Void

This represents a non-existent value. If a function returns nothing, then it returns
void by default.

Function

Functions take in zero or more parameters and return a value of a predetermined
data-type.

There is not a set keyword unlike the previous data types but instead the
following convention is used:

{ paramTypel paramType2 .. paramTypeK : returnType}
functionName =
paramNamel paramName? .. paramNameK [
//code

]

For example,

{int int : int} sampleFunction = x y [

//code
]

Functions must be declared before they are called. Functions can be declared
as:

{int int : int} sampleFunction;

Scope

Scope is controlled by curly brackets and square brackets from control structures and
function definitions respectively.

On a function level scope is managed in the following way. Upon entering the function
the parameters are at the outermost level of scope. Anything declared outside any
control statements or inner function bodies are also at this level.

Each interior function and control structures creates a new scope one level lower than
the level the interior function of control structure resides in and for each of these new
levels of scope upon entering the function the parameters are at the outermost level of
scope and, again, anything declared outside any control statements or inner function
bodies are also at this level. This recursive nature can continue ad infinitum.

Variables residing in a scope level are not in any scope levels above the level the
variable was declared in and are in every scope that is based of the current scope.
These results in variables coming into into scope when they are declared and going out
of scope when the matching closing parenthesis is found for opening parentheses most
immediately preceding the variables declaration. When a function calls a function the
scope of the caller is not inherited by the callee. All function not in another function are in
all scopes.

Sample Code:

{int int: int} bar = a b |
int z = a % b + 2;
//ok because the only variables in this scope are a and b
rtn z;

{int int: int} foo = x y [//x and y are immediately in the scope

int z = 0; //z at the same level of scope as x and y

int w = bar x y; //w also at this level

if w == [
int v = 200 + z;
//legal because z is inherited from the outer scope.

int v = w + bar x y;
//ok because the v in the if will be removed from scope

rtn v;

Control Flow
6.1. Program Entry and Exit

Entry into the program is accomplished by starting at the main function. This means that
the program also starts with any command line arguments entered into the program
when the program is executed. The main function is free to call other functions which
can also call other functions or themselves. No function can call the main function.
Functions can be declared outside the main (these are global functions), inside the main,
or inside each other.

Here is what the main function can look like:
{void : void} helloWorldFunction = [
<chr> hello [‘h’, Te’, MM, M7, Yo']1;

<chr> space (Y "1;
<chr> world = “world”;

<chr> helloWorld = hello + space + world;
print helloWorld; //[h,e,1,1,0, ,w,0,r,1,d]

rtn void;

{<<chr>> : void} main = args [
helloWorldFunction () ;
rtn void;

]
This would result in hello world being printed.

6.2. Expression statements and blocks

Expression statements are assignments or function calls. Our language supports only
expression statements, i.e. those statements that evaluate to a value. Statements are
terminated by a semicolon.

Square braces [] are used to group statements together into blocks. There is no
semicolon after a block ends with a square brace.

Sample code:
int x = 10; //this is an expression

print x; //this is an expression that returns void

if x==10 [//this is a block
print “equal”;//prints a char list “hello”

6.3. If-Else

The if-else statement is used to express decisions.

Syntax:
if conditionl [
statementl;
]
else |
statement?2;
]
Here, the else part is optional.
If the conditionl evaluates to true, then the statement1 is executed. If expression is
false, and if there is an else part, statement?2 is executed instead.
The square brackets are mandatory and help avoid ambiguity.

6.4. Else-If

This is useful for writing a multi-way decision. For example:

if a==b|[
d=10;
]

else 1f b==c]|

The expressions are evaluated in order. If a==b is true, then the statements associated
with it are executed, and this terminates the whole chain. Otherwise b==c is checked
and if true the statements inside the brackets corresponding to the else if are executed.
The last else statement is useful for checking the default case, however it can be
omitted.

Punctuation
7.1. Semicolon

All expressions are terminated with the a semicolon.
int a = 25; //This is a variable declaration in ALBS.

7.2. Colon

The colon symbol is used to separate the parameter types and the return type in the
function declaration.

{int int : int} add = x y [];

//The colon separates the two int parameters

//from the int return type of the add function.

7.3. Curly Braces

Curly braces are used for the enclosing of the parameter and return types in a function
declaration.

{int int : int} add = x vy [];

//The curly braces enclose the int parameters and return type.

7.4. White Space

White space is defined as spaces, tabs, newlines, and form feeds. It is ignored except
to separate tokens.

To lllustrate:
If a == [
Rtn 0;
]
Is equivalent to:
If a == [Rtn 0;]

But not:
Ifa==
[Rtn0;]

Which would result in a parsing error.

7.5. Parentheses

Parenthese are used control the order of evaluation.

int x =5/ 5 4+ 1; //evaluates to 2
5/(5 + 1); //evaluates to 0

int vy

7.6. Square Brackets

The square brackets must be used to enclose the function definition. They are also
used to in if/if else/else constructs.

{int int: int} multiply = a b [
if a == [
rtn 0;
1//if statement definition is enclosed with square brackets.
else |
int ¢ =a - 1;
rtn b + multiply c b;
]//else definition is enclosed with square brackets.
]//multiply definition is enclosed with square brackets.

Square braces are also used to enclose the values of a list.

<chr> hello = [‘h’, ‘e’ , 1,1,];
//The square braces enclose the chr values of the list hello.

8. Standard Library

8.1. /O
Function Sample Code Description
name
print <int> intList = [1,2]; Prints the argument passed to it.
print intList; //I[1,2]

input <chr> myInput = input; Takes input from the user as a
character list. The user ends the input
by the control+D command.

8.2. List Operations

Function Signature Description

name

listLength {<type>:int} listLength = Returns the length of the list myList

myList [...] as an integer value

head {<type>: type} head = myList Returns the first element in a list

[...] <type>
tail {<type>: <type>} tail = Returns a list containing all elements in
myList [...] a list <type> except the first one.
listGet {<type>,int: type} listGet = Returns an element in a list myList at
myList, index [...] index
listAdd {type,<type>,int: <type>} Adds a new Element newElement to
listAdd = newElement, myList, |[list myList atan optional index. If
index[...] index is not specified, then the
element gets added to the tail of the list
by default. It returns a new list.
leftReduce {{type, type:type}, <type>: It takes a function myFunction of
type} leftReduce = {type, type:type}, applies
myFunction, myList[...] myFunction to the first two elements
in myList, and then applies
myFunction to the result and third
element in myList, and so on. It
returns the final result of type type.
rightReduce | {{type, type:type},<type>: It takes a function myFunction of
type} rightReduce = {type, type:type}, applies
myFunction, myList[...] myFunction to the first last elements
in myList, and then applies
myFunction to the result and third
last element in myList, and so on. It
returns the final result of type type.

Lists can be concatenated using the ‘+’ operator.

8.21.

Length of List

function name

listLength

arguments

<type> myList

return type

type

sample code <int> samplelList = [1,2,3,4,5];
int len = listLength samplelist; //returns 5
additional info -
8.2.2. Head of List
function name | head

arguments

<type> myList

return type

type

sample code

<int> samplelist =
int headval =

head samplelist;

(1,2,3,4,5];
//returns 1

additional info

Throws an exception if the list myList is empty

8.2.3.

Tail of List

function name

tail

arguments

<type> myList

return type

<type>

sample code

<int> samplelist =
<chr> taillist =

//returns [2,3,4,5]

(1,2,3,4,5];

tail samplelist;

additional info

8.24.

Get element at an index

function name

listGet

arguments

<type> myList, Int index

return type

type

sample code

[‘a,I \bI, \CI];

//returns b

<chr> myString =
listGet 1 myString;

additional info

8.2.5.

Add an element to a list at an (optional) index

function name

listAdd

arguments

type newkElement, <type> myList, int index

return type

sample code

<type>
<chr> myString = [‘a’, ‘b’];
listAdd ‘¢’ myString; //[‘a’,’'b’,’'c’]

listAdd ‘¢’ myString 0;//[‘c’,‘a’,’'b’]

additional info

If index is not specified, then the element gets added to the tail of the list by
default.

8.2.6.

LeftReduce

function name

leftReduce

arguments

{type, type:type}, <type>

return type

<type>

sample code

<int> samplelist = [5,4,3,2,1];
int sumAll = leftReduce + samplelist;//15

additional info

If there are more than two arguments, then the user must specify the parameters
in parenthesis to avoid ambiguity of how the function and list are built.

8.2.7.

RightReduce

function name

rightReduce

arguments {type, type:type}, <type>
return type <type>
sample code <int> samplelList = [5,4,3,2,1];

int multiplyAll =rightReduce (funcThatReturnsAMultiplyFunc
‘a’) (funcThatReturnsAList samplelList);//120

additional info

If there are more than two arguments, then the user must specify the
parameters in parenthesis to avoid ambiguity of how the function and list are
built.

9. Language

Features

9.1. Single assignment

Variable can only be initialised when declared. They are immutable.

int x
X = 2
int x
int y
X = X

= 21; // variable x is initialized and assigned

5; // Error: this is not allowed
= 25; // Error: this is not allowed
= x;

+1; // Error: this is not allowed

9.2. First Class Functions

Functions can be passed as parameters and are assigned to a variable.

{int

int : int} add = x y [
rtn x + y; // explicit return statements

{{int int : int} int int : int} math = £f m n [

//f 1

]

s a first class function

rtn £ m, n;

int ¢ = math add a b;
//parentheses not required for calling functions

9.3.

9.4.

9.5.

Higher Order Functions

Functions can return functions.

{int : {int: int}} addX = x [
{int : int} toReturn = z |
rtn x + z;

]

rtn toReturn;

]

{int: int} increment = addX 1;
increment 4;// returns 5

Closures

Functions can access variables that are in their scope, even if they are not
explicitly passed to it.

{int int : int} addFunky = x y [

{int : int} add = z [
rtn x + z;//x is in scope

]
rtn add y*2;

]
addFunky 2 3; //returns 8

Type casting

Casting from one type to another is allowed. Lists can also be casted. Refer to
the conversion chart for casts for all valid casts.

chr myChar = (chr)2;//abc

<int> intList = [1, 2, 3];

<chr> myChar = (<chr>) intList; //[1,2,3]
//concat

<chr> helloWorld = hello + space + world;
//[hlelllllol ,W,O,r,l,d]

10. References

“C Operator Precedence." Cppreference.com., 10 July 2015. Web.

Kernighan, Brian W., and Dennis M. Ritchie. The C programming language. Vol. 2. Englewood
Cliffs: prentice-Hall, 1988.

Singh, Uday, et. al. “Superscript Language Reference Manual.” 2015.
http://www.cs.columbia.edu/~sedwards/classes/2015/4115-fall/index.html

http://www.cs.columbia.edu/~sedwards/classes/2015/4115-fall/index.html

