
COMS W4115
Programming Languages and Translators

Homework Assignment 1

Prof. Stephen A. Edwards Due February 17, 2016
Columbia University at 2:40 PM

Submit your assignment on paper (e.g., printouts) at the be-
ginning of class. Include demonstrations that your solutions
work. E.g., for each problem, include a printout showing how
your solution compiles and runs a few test cases.

Do this assignment alone. You may consult the instructor
or a TA, but not other students.

All the problems ask you to use OCaml. You may download
the compiler from ocaml.org.

1. Write a function that subtracts positive integers repre-
sented as lists of decimal digits. For example,

subl [2;5;3] [5;7] = [1;9;6]
subl [1;0;0;0;0;0;0;0;0;0;0;0]

[4;2;0;0;0;0;0;0;0;0;0] =
[0;5;8;0;0;0;0;0;0;0;0;0]

Your algorithm may assume the first number is larger
than the second. Arbitrary-precision arithmetic packages
use a similar technique but with a much larger radix.

2. Write a word frequency counter starting from the follow-
ing ocamllex program (wordcount.mll) that gathers all
the words in a file and prints them.

{ type token = EOF | Word of string }

rule token = parse
| eof { EOF }
| [’a’-’z’ ’A’-’Z’]+ as word { Word(word) }
| _ { token lexbuf }

{
let lexbuf = Lexing.from_channel stdin in
let wordlist =

let rec next l = match token lexbuf with
EOF -> l

| Word(s) -> next (s :: l)
in next []

in
List.iter print_endline wordlist
}

Replace the List.iter line with code that builds a string
map of (word, count) pairs, uses StringMap.fold to con-
vert the map to a list of (count, word) pairs, sorts the pairs
using List.sort, and prints them with List.iter.

Sort the list of (count, word) pairs using

let wordcounts =
List.sort (fun (c1, _) (c2, _) ->

Pervasives.compare c2 c1)
wordcounts in

Compiling and running my (20-more-line) solution:

$ ocamllex wordcount.mll
4 states, 315 transitions, table size 1284 bytes

$ ocamlc -o wordcount wordcount.ml

$./wordcount < wordcount.mll

9 word
7 map
7 let
7 StringMap
6 in
...

3. Extend the three-slide “calculator” example shown at the
end of the Introduction to OCaml slides (the source is
available on the class website) to accept the variables
named a through z, assignment to those variables, and
sequencing using the “,” operator. For example,

a = b = 3, b = b + 3, a * b + 2

should print “20”

Use an array of length 26 initialized to all zeros to store
the values of the variables. You’ll need to add tokens to
the parser and scanner for representing assignment, se-
quencing, and variable names.

The ocamllex rule for the variable names, which converts
the letters a–z into a VARIABLE token, is

| [’a’-’z’] as lit
{ VARIABLE(int_of_char lit - 97) }

The new ast.mli file is

type operator = Add | Sub | Mul | Div
type expr =

Binop of expr * operator * expr
| Lit of int
| Seq of expr * expr
| Asn of int * expr
| Var of int

