
There is no magic

Bob Martin

bobmartin08008@mac.com

The Source of My Biases

• Managed building ~100M lines of code

– System software, e.g., UNIX, C++, Tuxedo

– Network management

– Service control points, e.g., 800 and credit card calling

– Embedded systems, e.g., ATM switches

• Lead 3,500 programmer organization to 3-4x competitive productivity, 10x
competitive quality, and 95% on time/content

• Perspectives on software development

– “Oversaw” ~15,000 Bell Labs programmers as Bell Labs CTO

– 8 years on National Research Council Computer Science and
Telecommunications Board, e.g., reviewed failed government projects

– Learned about software development in different cultures through US and
foreign tours

– Chaired first IEEE Software Industrial Advisory Board

• Love technology – “one a year”

• Not expert in contemporary software technology/tools

I think about this when asked about Python

Software Systems Frequently Fail

• Poor Management
Well-proven techniques are often not used - ignorance, arrogance, or naivety

• Novelty
You don’t know what you don’t know

• Second System Effect

Boehm survey
Average overrun: 89.9% on cost, 121% on schedule, with 61% of content

Because:

Program System

Program 1 3

Product 3 9

Relative development effort

What Year Was This Conference?

Design
• Guidelines

– External function, e.g., user language

– Internal function, e.g., parsers

• Techniques

– Deductive or inductive

– Modularity and interfaces

– Complexity control

• Proscriptions

– Completeness, modularity, efficiency

– Self-monitoring and performance improvement

– Incremental systems

– Balance

• Security, control, … vs. cost

• Limited goals to attain excellent performance

• Design problems

– Data structures on system design

– Fixed resources

– Cooperating processes

• Documentation

Production
• Organization for producing software

– Number and quality of people

– Structure of large groups

– Control and measurement

– Internal communication

• Production techniques

• Monitoring

Service
• Distribution

– Media

• Acceptance criteria

• Documentation

• Adaptation

• Maintenance

– Error detection & reporting

– Response and distribution

• Documentation

• Performance

• Feedback into design

NATO Software Engineering Conference - 1968

Project MAC

• MIT's Project MAC
– Project on Mathematics and Computation, later backronymed to Multiple

Access Computer, Machine Aided Cognitions, or Man and Computer

– Darpa funded 1963

– Created Multics with processes, pages, segmentation, hierarchical file

system, and lots and lots more!

– Trained Ken Thompson and Dennis Richie who built Unix carefully

selecting a few of Multics ideas (Unix is play on Multics name)

• Columbia’s Project MAC

Multics Overview Paper - 1965

“Experience has shown that privacy and

security are sensitive issues in a multi-

user system where terminals are

anonymously remote”
F. J. Corbató MIT and V. A. Vyssotsky Bell Labs

Productive Teams

• Skilled, disciplined programmers

 Productivity of best programmers are ~10+ times the average

• Skilled, disciplined teams

How many programming languages have you used to produce a working program?

1 0%

2 3%

3 16%

4 25%

5-10 41%

>10 16%

 What is the largest program you have written, measured in lines of code?

10 – 100 0%

100 – 1,000 28%

1,000 – 5,000 50%

5,000 – 10,000 6%

> 10,000 16%

 Have you ever worked with others before this class to produce a program?

Yes 94%

No 6%

Who Are You

Experienced programmers

How good a programmer are you relative to others in this class?

Top 10% 10%

Top 11-25% 28%

Top 26-50% 34%

Top 51-75% 21%

Bottom 50-25% 3%

Bottom 24-11% 0%

Bottom 10% 0%

Who Are You

Experienced, high ego programmers

} 97% are in the top half

(A record for this survey!)

Columbia has helped me learn to program by:

Teaching me algorithms and data structures 100%

Teaching me programming style 10%

Reviewing the details of great programs 0%

Reading/correcting at least:

 1 program greater than 100 lines of code 90%

 5 programs greater than 100 lines of code 25%

 10 programs greater than 100 lines of code 10%

Not learning how

to program

(Question not

included in this

year’s survey)

Is The Person Next To You A Good Programmer?

• Why is so little time spent teaching college students

how to program?

– Compare it to the importance/effort placed on teaching writing

• We read great books to write prose – read great code

– Lions' Commentary on Unix

– The Practice of Programming – Kernighan & Pike

• Write code the way you write prose

– Have reviews of your code to find and learn from your errors

– Use a style guide

What techniques do you use to produce high-quality code? (Check all that apply)

Write a requirements specification before writing code 50%

Write a design specification before writing code 66%

Have colleagues review your design for ease of use 47%

Develop a performance model 17%

Build a prototype 50%

Follow a programming style guide 50%

Have a colleague inspect your code 37%

Do root cause analysis on bugs 33%

Gather metrics on code quality 17%

Use automated testing 40%

Who Are You

Experienced, high ego programmers, who write lousy code

What is the error rate per 1,000 lines of code in your completed programs?

<.5 3%

.5 – 1 6%

1 – 5 22%

>5 22%

Don’t have a clue 47%

Best in class in industry

This is one of the highest use of technique in five years of

survey. Why? (Both Edwards’ classes were high)

} Don’t learn from

 errors or others

A Guess

Process-oriented geeks took the survey Code gunslingers did not

 They will be rich They will be happy

Watts Humphrey’s Software Engineering Model

• Personal Software Process

– Process discipline & measurement

• Fault injection/removal, personal process, programming style

guide

– Estimating & planning

• Estimate program size and do testing

– Quality management & design

• Design & code review

Find and Fix Defects Early

10

20

50

100

200

500

1000
R

e
la

ti
v
e

 c
o

s
t

to
 f

ix
 d

e
fe

c
t

2

1

5

Requirements Design Code Development Acceptance Operation

test test

Smaller Software Projects •

Phase in which defect was fixed

10

20

50

100

200

500

1000

2

1

5

Requirements Design Code Development Acceptance Operation

test test

•

* Barry Boehm - A View of 20th and 21st Century Software Engineering

• Full lifecycle activity

– Multi-level - unit, subsystem, system

– Often 50% of time & effort

– “50% of Google code is for testing”

• What to test

– Requirements & design

– Coverage

– Usability

– Performance

• One-day automated build/test
– Domain specific tools

– Field-driven test libraries

• Measure with S curves

Time

N
u
m

b
e
r

Test cases run

Bugs found

Bugs closed

Testing

Buy death

march whip

}

Announce new

features

 In
s
ta

lla
b
ility

U
s
a
b
ility

S
e
rv

ic
e

P
e
rfo

rm
a
n
c
e

F
u
n
c
tio

n
a
lity

Q
u
a
lity

.
.

.

.

. .
G

o
o

d

Organization

Project

Metric Driven Improvement

Project

Learns

Project

Teaches

Organization

Needs to

Learn

N
u
m

b
e
r

>6 2 1

4 3 2 1 4 3 2 1 4 3 2 1

….
Age

Severity

• Quality

– Measures
• Fault density

• Service responsiveness

– Improvement
• Root cause analysis

• Team & individual

• Productivity

• Customer satisfaction

– Huge fault density correlation

What Is Important to You?

Rate the importance of each of the following in assuring a successful,

quality project – High (H), Medium (M), Low (L):

Project plan H

Language specification M-H

Architecture document M-H

Design document M-H

Test plan M-H

Automated testing system M-H

Project meetings on status & plans M-H

Project meetings to review designs, code, … H

Clear roles, e.g., tester, architect, … M

Great people H++

Again, unusually high value on technique/process relative to other years.

Rank order the value/effectiveness of each role in assuring a successful, on time, quality

project – High (H), Medium (M), Low (L):

Architect 3.1

Project manager 3.1

Programmer 3.1

Tester 2.7

Documenter 2.1

Hmmm, you want to soar with the eagles

but are stuck with high-ego turkeys

/1.4

/1.6

/1.4

/1.6

/1.6

Naked

Software Teams

Mole Rats &

Building Complex Things

• Rank order the importance of:

– Architect

– Project manager

– Craftspeople

Architecture & Design

• Control & Reduce Complexity

– Chunk independence

• Reduce n2 effects

• Structure for changeability

• Achieve Steve Job’s “Taste”

– Inject huge-payoff CS technology

• Tiny languages, finite state machines, appropriate algorithms & data
structures, formal methods, etc.

• Check it

– Prototype

– Audit with smart friends

• Watch out for crumbling with time

– Throw old away, don’t fix forever*

* “An Architecture History of the Unix System” - Feldman Usenix ’84

“A Model of Large Systems Development” – Belady & Lehman IBM Systems
Journal ‘76

Performance Estimation

How much water flows through the Mississippi

each year?

“Programming pearls: the back of the envelope”

Communications of the ACM, Vol 27, Issue 3, 3/84

Effort Estimation

• Individual productivity varies tremendously

• Approach & algorithm matter
 How many lines of code to determine text word frequency count,

most frequent first

o “1” - Six Unix tools, piped together

o 100 - C, Pascal

o ~600 - ACM paper on commenting code

o 1,000 - Cobol, PL/1

o 5,000 - Unisys SW VP

o 10,000 - IBM SW VP

o ??? with very detailed requirements

• An established team’s productivity is quite constant

 Function of system size, complexity & age

 Improves with quality

Getting Ready For Your Profession

What profession do you plan to pursue?

Analyst/Product manager

New Product Programmer

Maintenance Programmer

Tester

Teacher

Business person

Don’t know

• 1/5 – 2/5 do R&D

• 1/4 - 1/3 are “programmers,” while 1/2 are testers

• 1/10 – 1/5 work on new products

Thus, less than 2%!
• Learn to test

• Learn to maintain

Will You Be A New Product Programmer?

Very unlikely even if you work for a software company!

Productive Teams

• Skilled, disciplined programmers

• Skilled, disciplined teams

Why Teams?

• Takes teams to do complex things

• Team decisions are better than individual decisions

 Individuals can become enamored with their own errors – Francis Crick

 Diverse backgrounds and skills

Rank Order Survival Value of:

 Flashlight

 Jackknife

 Sectional map of the area

 Plastic raincoat

 Magnetic compass

 Compress kit with gauze

 Cosmetic mirror

 .45 caliber pistol (loaded)

 Parachute

 Bottle of 1000 salt tablets

 1 quart of water per person

 Edible Animals of the Desert book

 2 pairs of sunglasses

 2 quarts of 180 proof vodka

 1 top coat per person

First as an individual, then as a team

Decision Quality Rank Order

 All Female Teams

 All Male Teams

 Individuals

Desert Survival Game*

Teams with Males & Females

*Desert Survival Situation™, Human

Synergistics International

But, Programming In Teams Isn’t Fun for

Everyone

Watts Humphrey’s Software Engineering Model

• Team Software Process

– Launch

• Assign roles (and respect them), estimate effort, assess risks, produce

plan

– Execution

• Track actual effort, schedule & defects; meet weekly

– Post Mortem

• Assess & improve

Team Behavior

• Steve Job’s rocks in a rolling tin can with grit metaphor*

– The forceful grinding together produces beautiful polished rocks

– Balance contention and diplomacy

– Suppress revenge behavior – (Humans like revenge, even at their own peril)

• Where you were raised influences your behavior**

– Rain forest tribes - polytheistic or non-interventionist monotheistic, less

likely woman are inferior

– Desert tribes - interventionist monotheistic, warrior classes

* The film: “Steve Jobs – The Lost Interview,” an extraordinary exposition on

entrepreneurship and product innovation

** Stanford's Robert Textor's “Cross Cultural Summary” - tables on 400 cultures and 500

cultural traits

Development Process – few ideas, many

names

The few ideas
•Phases, i.e., requirements, design, code, lots of test

•Little steps to refine and learn

•Inspections*/reviews to find defects

Incremental

1970’s

Spiral

1988

Agile/Extreme

2001

*M.E., Fagan (1976). "Design and Code inspections to reduce errors in

program development". IBM Systems Journal 15 (3): pp. 182–211.

A Mini-Phase

Requirements Design

Code

Test

Code

System Test & Fix

Inspect/Review*

Root cause analysis to improve individuals and team*

*Best In Class

Defects

Process Discipline Works

Software Engineering Institute’s Capability
Maturity Model (CMM) Levels:

1. Initial

• Cowboys are us

2. Managed

• Configuration Management

• Project Planning

3. Defined

• Organizational Process Focus

• Risk Management

4. Quantitatively Managed

• Quantitative Project Management

5. Optimizing

• Casual Analysis and Resolution

Improving process maturity results in annual

improvements of:

1. 35% in productivity

2. 22% in defect detection

3. 19% reduced time to market

4. 39% fewer defect rates

0

10

20

30

40

50

60

70

80

1 2 3 4

Industry CMM Levels

%

But How Much Discipline?

• Content not process makes a great product

• Discipline alone makes building lousy things predictable

• It is a function of intended use

Use Discipline

Test an algorithm Very little

Typical commercial product

(or your class project)

Medium

Life or significant financial

exposure

Lots

The Project Plan

• The plan
– Delicate balance of top/down and bottom/up

– PERT to plan, GANTT to manage

– Railroad train feature loading

• Critical path control
– Don’t multitask

– Buffer schedule

– Base schedule on 50% estimates

• Call the shot
– Best to wait until specification/design done

– Domain expertise crucial

– Sizing models help (+/- 30%)

– Starvation not gluttony

“Whilst it is true a large programming project might require a large programming

team, a large programming team will always build a large project” - J. K. Buckle

“Managing Software Projects”

Gantt Chart

PERT Chart

Controlling The Schedule

• The weekly/biweekly project meeting
• Milestones

– Early and few big milestones are crucial

– Build team morale, tempo & customer confidence

“.. the disaster is due to termites, not tornadoes; and the schedule has

slipped imperceptibly but inexorably. Indeed, major calamities are

easier to handle; one responds with major force…” - Brooks

“A customer will always forgive you a slipped schedule or missed
feature, they will never forgive you for bad quality or bad performance”
– Buckle (Perhaps, the major Obamacare Website error!)

• Slips
- If you must, do it once

- Iterative development provides an out

The Mementos Game – Start With A Group

Put 4 Teams In Rooms

Remove 4 Judges

Next 30 Minutes

Invent 4 Mementos

Decide how to decide

The Stephen VooDoo Doll, Model C - $3.95

The Stephen VooDoo Doll, Model C++ -

$4.95

Another Survey

How many of you want:

• Neither voodoo doll - no Stephen reminder!

• Model C version - $3.95 ?

• Model C++ version - $4.95?

– The pins just might work!

Next 10 Minutes

Each team

reviews all

mementos

and picks

best

Pick The Best of Best

Observe

Debate to

pick best

of best

Next 30 Minutes

Observe

Debate to

pick best

of best

Pass written

messages to

representative

Pass written

messages to

representative

Next 5 Minutes

Decide

Give up in frustration

Mementos Game - Lessons

• People support what they invent

• There is cohesion within a team and competition with/derision of

other teams regardless how capriciously the teams were formed.*

• Even on meaningless things, decision making is hard when ego is

involved

• Decisions by a third person are often easy – team roles!!!

• Most decisions are really 50/50 and can/should be made quickly

* Scientists from Bertrand Russell through E. O. Wilson observe that the behavioral

genetics of all social groups, e.g., ants and people, lead to these team/group behaviors.

Keep It Moving

Project manager style

•Most decisions are 50/50

•Avoid acting like “A glacier with dignity”

“An officer in charge on an Indian agency made a requisition in the autumn for a stove costing

seven dollars, certifying at the same time that it was needed to keep the infirmary warm during

the winter, because the old stove wore out.”

 Then, after glacial dignity

“The stove is here. So is spring” *

* “An Autobiography” - Theodore Roosevelt

Team Dynamics Lessons

• Desert Survival – teams work, but ego interferes

• Memento – egos and pride interfere

• Inclusion is great – people have unique skills

• Contention can be great, but watch revenge

• Decisions – assign roles and make decisions, don’t ego debate endlessly

Leveraging Team-Member Talents

• Have team pizza dinners to bond and discover unique skills

• Use quality circles to leverage multi-cultural participation

How do you plan to complete your assigned work on time and with high quality? (Check all that apply)

Estimate the size of job based on experience and cut back the project scope to meet schedule 75%

Have a detailed plan with intermediate milestones to guide my work efforts 69%

Get my teammates to do some of my work 28%

Work insanely 69%

Plead with Edwards for extension 16%

Threaten Edwards for extension 13%

Attempt to bribe Edwards for extension 16%

Contract an allegedly incurable illness for an extension 9%

Have a very old, imaginary relative die (for the third time) for an extension 16%

Who Will You Be?

Experienced, high ego sleep-deprived programmers, who

write lousy code

Final Suggestions

• Try Proven Techniques
– Middle weight development process, iterative/spiral/Agile

– Defect root cause analysis

– Inspections/reviews
• Architecture & usability (with another team)

• Code

– Automated testing

• Build A High-Performance Team
– Have pizza dinners

– Debate as an inclusive team

– Assign roles and decision authorities

• Read
– Lion’s “Commentary on Unix”

– Fred Brooks’ “The Mythical Man Month”

• Watch “Steve Jobs – The Lost Interview”

• If all this fails, send Edwards for another

Taiwanese McDonalds’ modeling engagement

Tenrecs – Each Unique With Special Talents

Backup

Dev Bootcamp

• 19 weeks - 1000 hrs in 9-week immersion, recommend sleep the other 500

• 12:1 student teacher ratio

• $500 room in hacker houses

• Provides computers, yoga, stretching, meditation and mindfulness training,

career week

• Results - $76K average salary, 75% employed

• Skills

– Ruby

– Agile Development

– Rails Application Framework

– Ajax, jQuery

– Test Driven Development

– Intra & inter personal issues that hinder teamwork

– HTML & CSS

– Git & Source Control

– Pair-programming, code reviews

– Interview and presentation skills

Learning

• Disasters
– Mine

– Others

• Really good companies
– IBM - Discipline & inspections

– Sun - Tempo

– Japan - Quality circles & reuse

– Microsoft - Reuse

– Apple - User centered design & tool kits, “Design of Everyday Things” - Don Norman

• Really smart professionals
– Al Aho – Swamp drainer

– Fred Brooks – “Mythical Man Month,” “No Silver Bullet”

– Barry Boehm – Estimation and cost of errors

– Michael Cusumano – Software factories

– Edsger Dijkstra – Importance of time in systems

– Watts Humprehy - Encapsulated team and personal discipline - “TSP, PSP”

– Martyn Thomas - Formal methods

– Ken Thompson - The programming craft

What makes a program(er) good?

• Has correct functionality, performance and security

• Has a low defect rate

• Was implemented with reasonable productivity

• Can be maintained and evolved by others

– Its style has good “taste”

• Uses appropriate algorithms and libraries

Facts of Life

• Failure is the norm

– But it needn’t be

• Error correction costs increase exponentially during the lifecycle

• Programmers are a special breed*

– They like machines not people

– They have high need for approval/recognition

– They must respect the leader

– Beware, complicators and prima donnas lurk in the weeds

• Software engineering is complexity management

– Race with technology/tools

– Complexity is still ahead

• Good software engineering is old hat

– But is not always used - why????

“Two things are infinite: the universe and human stupidity; and I'm not sure about
the the universe” - Einstein

 * “Psychology of Computer Programmer” - Gerald Weinberg

Reaching Consensus

• Important
– Takes teams to do complex things

– Team decisions are better than individual decisions

– Must be effective for speed

• Hard
– Ego, individual and team

– Conflicting goals

– Lack of decision criteria/expertise

• Complex - Business School Pet Topic

– Leadership, e.g., the cult of the personality

– Sources of power, e.g., charisma, common enemy

– Organizational structure

– Decision models

– Game theory

A Leadership Decision Model*

* Vic Vroom, Yale

Autocratic Consultative Group

Speed Buy-in

Conflicting goals

Expertise

Decision importance
Low High

Leader Group

More Madagascar Diversity

