
easel

	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Manager | Danielle Crosswell | dac2182
Language Guru | Tyrus Cukavac | thc2125

System Architect | Yuan-Chao (Oswin) Chou | yc3211
Tester | Xiaofei (Sophie) Chen | xc2364

	 2	

1.	INTRODUCTION	 4	

2. LANGUAGE	TUTORIAL	 4	

2.1	INSTALLING	DEPENDENCIES	AND	RUNNING	THE	COMPILER	 4	
2.2	BASIC	PROGRAM	 4	

3.	LANGUAGE	REFERENCE	MANUAL	 7	

3.1	KEYWORDS,	COMMENTS,	AND	WHITESPACE	 7	
3.1.1	KEYWORDS	 7	
3.1.2	COMMENTS	AND	WHITESPACE	 7	
3.2	IDENTIFIERS	AND	DATA	TYPES	 7	
3.2.1	NAMES	 7	
3.2.2	PRIMITIVE	DATA	TYPES	 7	
3.2.2.1	Primitive	Variables	 7	
3.2.2.2	Primitive	Literals	 8	
3.2.3	NON-PRIMITIVE	DATA	TYPES	 9	
3.3.1	SIMPLE	VARIABLE	DECLARATIONS	 9	
3.3.2	ARRAY	DECLARATIONS	 10	
3.3.3	SCOPE	 10	
3.4	EXPRESSIONS	 10	
3.4.1	UNARY	OPERATORS	ON	NUMERIC	VALUES	 10	
3.4.2	POSTFIX	EXPRESSIONS:	ELEMENT	ACCESS,	PROPERTY	ACCESS,	AND	FUNCTION	CALLS	 11	
3.4.3.	MATHEMATICAL	EXPRESSIONS	 12	
3.4.3.	EQUIVALENCE	AND	COMPARISON	 12	
3.4.4.	LOGICAL	EXPRESSIONS	 13	
3.4.5.	ASSIGNMENT	 13	
3.5.	STATEMENTS	 13	
3.5.1.	IF	STATEMENTS	 13	
3.5.2.	IF-ELSE	STATEMENTS	 14	
3.5.3.	FOR	LOOPS	 14	
3.5.4.	WHILE	LOOPS	 14	
3.6.	FUNCTIONS	 15	
3.6.1.	FUNCTION	DECLARATIONS	AND	DEFINITIONS	 15	
3.6.2.	ANONYMOUS	FUNCTIONS	 17	
3.6.3.	INVOKING	FUNCTIONS	 18	
3.6.4.	BUILT-IN	FUNCTIONS	 18	

4.	PROJECT	PLAN	 19	

4.1	PROGRAMMING	STYLE	GUIDE	 20	
4.2	PROJECT	TIMELINE	 21	
4.3	ROLES	AND	RESPONSIBILITIES	 22	
4.4	SOFTWARE	DEVELOPMENT	ENVIRONMENT	 22	
4.5	PROJECT	LOG	 22	

5.	ARCHITECTURAL	DESIGN	 32	

5.1.	TOP	LEVEL	(EASEL.ML)	 33	

	 3	

5.2.	SCANNER	(SCANNER.MLL)	 33	
5.3.	PARSER	(PARSER.MLY)	AND	ABSTRACT	SYNTAX	TREE	(AST.ML)	 33	
5.4.	SEMANTIC	CHECKER	(SEMANT.ML)	 33	
5.5.	CODE	GENERATION	(CODEGEN.ML)	 34	
5.6.	THE	EASEL	COMPILER	COLLECTION	(ECC.SH)	AND	THE	OPENGL	WRAPPER	(GLWRAP.C)	 35	
5.7.	IMPLEMENTATION	ROLES	 35	

6.	TEST	PLAN	 36	

6.1	SOURCE	LANGUAGE	AND	GENERATED	PROGRAMS	 36	
6.2	TEST	SUITE	 50	
6.3	TEST	AUTOMATION	 51	
6.4	TESTING	ROLES	 52	

7.	LESSONS	LEARNED	 52	

7.1	DANIELLE	CROSSWELL	 52	
7.2	TYRUS	CUKAVAC	 52	
7.3	OSWIN	CHOU	 53	
7.4	SOPHIE	CHEN	 53	
7.5	ADVICE	FOR	FUTURE	TEAMS	 54	

8.	APPENDIX	 54	

8.1	SCANNER.MLL	 54	
8.2	PARSER.MLY	 56	
8.3	AST.ML	 59	
8.4	SEMANT.ML	 62	
8.5	CODEGEN.ML	 68	
8.6	EASEL.ML	 79	
8.7	AUTOTEST.SH	 79	
8.8	MAKEFILE	 83	
8.9	GLWRAP/GLWRAP.C	 84	
8.10	GLWRAP/MAKEFILE	 86	
8.11	TEST	SUITE	FILES	 87	

	 4	

1. Introduction
We created a language that allows a user to create art using mathematics. By writing a few

simple functions, a user is able to combine basic mathematical principles with colors to create
aesthetically pleasing visualizations. easel takes advantage of the fact that images are essentially
matrices of pixels, and thus the user can easily create geometrical and symmetric images by simply
manipulating certain pixel values.

Because creating visualizations is the main goal of easel, in addition to basic data types
including integers, floats, and booleans, our language includes a pix datatype that is able to
represent pixel values in integer form. Additionally, our language can implement a two-
dimensional array, which allows the user to create the canvas on which to draw the image.

The goal of easel is to create a simple interface for mathematical data and functions to be
transformed into images, and so easel is capable of performing both basic and advanced arithmetic,
such as trigonometric and logarithmic functions using built-in functions and simple operators.
Additionally, functions are the core of the language and so they can be passed as parameters and
declared anonymously. Our hope is to be able to make complex images while keeping the
programming as simple as possible.

2. Language Tutorial
2.1 Installing Dependencies and Running the Compiler

The first step in running easel programs is downloading the proper dependencies. In order
output easel drawings, you must have OpenGL installed on your machine. To install all necessary
libraries, run the following bash command:
$ sudo apt-get install freeglut3 freeglut3-dev libglew-dev gle-graphics
	
Now use the provided source files or download from the GitHub repository:
$ git clone https://github.com/OswinC/easel.git

Run make in the glwrap/ directory and the easel/ directory
$ cd glwrap
$ make
$ cd ../
$ make
	
To compile and run a program:
$./ecc.sh filename.es
$./filename
	
2.2 Basic Program

The following is a program called squares.es that will create a checkered pattern with user-
defined size squares and colors. The program will take a matrix and fill in the corresponding pixels
with the given colors, based on the size argument passed in by the user. By calling the draw built-
in function, the checkered patter will be drawn onto the user’s screen.

Start by creating a file called squares.es and opening it up in a text editor.

	 5	

First, define global variables at the top of the program. In this program, we need two colors to
alternate in squares (so two pix data types), a matrix that can hold pixel values and integer values
that store the width and height of the matrix that we defined. It is important to note that we are
defining pix values in two different ways in this example (and both are valid). Variables are also
able to be declared on the same line, separated by a comma.
pix col1 = #BF8FD600;
pix col2 = {70, 58, 39, 170};
pix canvas[960][720];
int W = 960, H = 720;

Next	we	are	going	to	define	a	function	(we	will	first	look	at	the	function	definition	and	then	look	
at	the	body	of	the	function).	The	function	below	is	named	plaid,	takes	in	one	integer	argument,	
and	returns	void.		
function void plaid(int p_w) {
 /* function body */
}
	
Looking	at	the	function	body,	we	first	declare	our	local	variables	and	then	create	nested	for	loops	
to	iterate	through	all	values	in	the	pix	matrix.	Without	looking	at	the	body	of	the	nest	for	loops,	
the	syntax	is	as	follows.	For	loops	take	three	expressions	and	increment	the	given	variable	until	
it	meets	the	condition	given	in	the	second	expression	of	the	loop.	
int x, y;
for (y = 0; y < H; y++) {
 for (x = 0; x < W; x++) {
 /* body */
 }
}
	
Next,	the	inside	of	the	for	loop	consists	of	an	if-else	statement.	This	statement	will	check	if	the	
given	condition	is	true	(this	is	where	the	program	determines	which	color	to	assign	to	the	given	
index	of	 the	matrix).	Because	the	statements	 inside	of	 the	 if-else	statements	 is	only	one	 line,	
braces	are	not	necessary	(and	are	omitted	for	cleaner	code).		
if (((x/p_w)%2) == ((y/p_w)%2))
 canvas[x][y] = col1;
else
 canvas[x][y] = col2;
	
Finally,	 we	 still	 need	 to	 actually	 call	 the	 plaid	 function	 in	 the	 program	 and	 draw	 the	 canvas	
returned	from	the	function.	We	do	this	simply	by	making	two	function	calls:	 the	first	 to	plaid	
(where	the	argument	is	an	integer	that	specifies	how	large	to	make	the	returned	squares)	and	
the	second	to	draw	function,	which	takes	as	arguments	a	matrix	and	x	and	y	values	that	specify	
offset	from	the	top	left	corner.			
plaid(100);
draw(canvas, 0, 0);
	
	
	
	

	 6	

Finally,	putting	the	code	all	together	in	one	program,	we	get:	
/*squares.es*/
pix col1 = #BF8FD600;
pix col2 = {70, 58, 39, 170};
pix canvas[960][720];
int W = 960, H = 720;

function void plaid(int p_w) {
 int x,y;
 for (y = 0; y < H; y++) {
 for (x = 0; x < W; x++) {
 if (((x/p_w)%2) == ((y/p_w)%2))
 canvas[x][y] = col1;
 else
 canvas[x][y] = col2;
 }
 }
}

plaid(100);
draw(canvas, 0, 0);

	
After	saving	your	program	(and	assuming	you’ve	already	run	make	in	both	the	easel/	directory	
and	glwrap/	directory),	run	these	commands	and	the	following	output	should	appear	on	your	
screen.	
$./ecc.sh squares.es
$./squares
	
	

	 7	

3. Language Reference Manual

3.1 Keywords, Comments, and Whitespace
3.1.1 Keywords
The following are keywords reserved by the language and are not permitted as variable names.

bool false true int pix red alpha tan randos
float function if else void green cos log
return for while draw draw_size blue sin rando

3.1.2 Comments and Whitespace
Comments within a program are ignored and delineated by
/*[text]*/
Hence, all comments must have an opening “/*” and a closing “*/”, which is then skipped by the
parser.

There must be at least one space between tokens in order to separate them unless a separator (“,”,
“.”, or “;”) is between them. A given token is therefore not allowed to have whitespace within it,
lest it be interpreted as two separate tokens. Otherwise, whitespace is ignored.
	
3.2 Identifiers and Data Types
3.2.1 Names
Names are used to identify variables of data types as well as functions. They are allowed to be a
sequence of alphanumeric characters and underscores, excepting those that match with reserved
keywords, which will be interpreted as keywords in accordance with the grammar rules to follow.
A name must begin with a letter or underscore, and upper and lower-case letters are not considered
equivalent.
	
These are examples of names accepted by easel:
sampleName
Sample_name2
_sampleName_3
	
And	the	following	name	will	be	rejected:	
3sample

	
3.2.2 Primitive Data Types
3.2.2.1 Primitive Variables
Primitive variables can be of the following 4 data types:
int 32-bit (or default machine architecture size) 2’s complement number values

float 32-bit

	 8	

bool 1-bit true of false values. Can be represented using “true” or “false” keywords or simply
“1” or “0” are acceptable

pix 32-bit integer values. A pix stores a color value from 0-16777216 plus and alpha value
from 0-255. Therefore, the color and alpha values represent blocks of bits.

Integers are signed 32-bit values and may take defined values from -268435456 to 268435455.
Any values outside of this range will compile, but the integer will take on an undefined value.

Integers may be used anywhere floats can be used and conversion is automatic. That said, a float
value cannot necessarily be used anywhere an int value is expected.

3.2.2.2 Primitive Literals
easel supports the following primitive literal types: integer literal, floating point literal, boolean
literal, and pix literal. Integer literals are either written in decimal notation or hexadecimal
notation. Decimal notation is defined as one or more digits between 0 and 9. Hex notation is
denoted by a “#” followed by one or more numbers or letters (either uppercase or lowercase are
accepted).

Following are examples of integer literals:
9
199
#09aeff
4aae00 /* this fails because without the '#' it is not interpreted as a hex value */

Floating point literals in decimal form consist of an integer value followed by an optional decimal
point and other integer value (representing the fraction) as well as an optional exponent. If the first
integer value does not exist, then there must be a decimal point followed by an integer value. An
exponent may follow either the first integer value, or the decimal and second integer value, or both.
No hex values are permitted in this representation.

Following are examples of floating point literals:
1.0
-2e15
0.34e99
42 /* this is not a floating point literal (rather it's an int literal) */

Boolean literals are simply true or false and correspond to integer values of 1 or 0. Boolean values
in general will be promoted to integer or float status if placed into the context of mathematical
comparisons.

Pix literals are primarily represented by four consecutive integer expressions. These take the
form of four unsigned 8-bit integer values in “list notation” which represent the red, green, blue,
and alpha values of the pix respectively1.

																																																								
1 The red, green, and blue values indicate the amount of each respective color is in the pixel, while the alpha value
stores information regarding transparency. A lower alpha value means the pixel will be more transparent when blended

	 9	

Any valid integer literal or expression can be used for each of the list values. However, each value
will be treated as an unsigned 8-bit integer. It is therefore advised that a programmer use integer
expressions in the pix literal list that evaluate to proper 8-bit unsigned integer values, as other
values may compile but behave in an undefined manner.

Additionally, 32-bit int literals, in either decimal or hexadecimal form, may also be used in the
context of pixel values.

The following are examples of pixel literals:
{255, #ff, 0, #98}
#ff29ae00
{300, #gg, 257, -5} /* rejected because #gg is not a valid hex value */
{300, #ff, 257, -5} /* would compile but behave in an undefined manner because
 the fourth value is signed rather than unsigned */

3.2.3 Non-Primitive Data Types
Variables storing a reference to a piece of data (rather than the data itself) and built using the
above-mentioned primitive data types are created using the following types:

array a data structure to store a sequence of adjacent values of a given data type.

matrix

a data structure to store a sequence of adjacent arrays of a given data type. Only 2-
dimensional matrices are supported in easel.

function a reference to a function instance.

Functions are able to be referred to as literals in their own right as well. A function literal, or
anonymous function, is defined in the following form:
function type (function-parameter-list) {statements}

Function literals, or anonymous functions, can be passed as parameters to other functions (see
section 3.6).

3.3.1 Simple Variable Declarations
Primitive variables are declared simply by providing the variable’s type followed by its name.
Declaring a variable without assigning it to a value with automatically initialize the variable with
a “0”2. Definition can happen within a separate statement, or at the same time as declaration. The
only exception is when function calls are required: a function call performed at the same time as
declaration will result in undefined behavior.

																																																								
with other pixels, whereas a higher alpha value will be more opaque. Alpha values are unimportant in the current
implementation of easel, as only one drawing context may be made at a time; in future versions, these values will play
a larger role in blending different drawings.
2	The default value of zero allows a user to easily create and initialize a “canvas” (or matrix of pixels) in one go. Such
a matrix can be drawn immediately if desired without the need for explicit initialization.

	 10	

int var; /* declares variable of type int called var; var currently equals 0 */
var = 5; /* var now equals 5 */
int var2 = 10; /* create a new variable, var2, and set it equal to 10 */

3.3.2 Array Declarations
Arrays are declared using the type the array will store followed by the name of the variable and
bracket notation. Values within brackets must be integer expressions, and a size must be provided
at declaration in order for the declaration to be valid. When an array is declared, all elements in
the array will be initialized to 0. Unlike simple variables, an array cannot be declared and defined
on the same line.
	
pix arr[5]; /* declares an array of pixels with length 5 */
pix brr[]; /* this will fail with a parsing error because a size must be provided */
	
	
Matrices are created by nesting two arrays. Therefore, the syntax is similar although you must
specify the size of both the inner and outer arrays. To do this, the programmer must declare the
type of the matrix, the name, and then use two sets of brackets. The first bracket specifies the inner
array (the number of columns) and the second bracket specifies the out array (the number of rows).

float matrix[4][8]; /* decalres a matrix with 8 rows and 4 columns */
int matrix[][3]; /* this fails because the size of both the inner and outer array must be

 specified */
	
3.3.3 Scope
Scope is best explained with a brief description of program structure. A given program consists of
the global space, wherein any statement can be executed, or a function can be defined.

The scope of a variable in easel is defined to be within the function in which it is declared. Regions
within control or loop statements have access to all other variables declared within the same
function.

Global variables can be accessed and modified by any functions within the program.
	
3.4 Expressions
Expressions can take many forms but at their essence they return mathematical values. In their
simplest form, expressions give the value of primitive literals or variables of primitive data types.

Expressions that are parenthesized will be evaluated first:
1 + (2 + 3) = 1 + 5

3.4.1 Unary operators on numeric values
Integer and floating point values are able to be given specific signs, positive or negative, by
preceding them with a unary operator “-”.
Additionally, boolean values can utilize the unary operator “!” to flip its values (i.e. !true will
return false). Using the “!” operator on an integer that is not equal to 0 is not allowed and will
throw a compile time error.

	 11	

Additionally, the increment (“++”) and decrement (“--”) operators can be used on integers, floating
point numbers, and pix variables to either increase the current value by 1 (“++”) or decrease the
current value by 1 (“--”).
3.4.2 Postfix Expressions: element access, property access, and function calls
After evaluating the simple expressions mentioned above, any postfix operators are applied
(including all of the unary operators).

Of key importance for easel’s functionality is the array subscript operator (“[ind]”). A programmer
can both assign array elements and access elements using this operator.

int arr[5];
arr[2] = 10;
arr[2]; /* returns 10 */

Matrices additionally use the subscript operator. In easel, a matrix is stored as [col][row] so to
access a particular element, use two consecutive subscript operators.

int matrix[5][5];
matrix[2][0] = 7;
matrix[2][0]; /* returns 7 */
matrix[1][1]; /* returns 0 because arrays/matrices are initialized to 0 */

Arrays additionally have a “.” operator for property access. The “.” is used to get the size of the
outer array (i.e. for a matrix, the number of rows), using the keyword “size”.
	
pix arr[10], matrix[2][5];
arr.size; /* returns 10 */
matrix.size; /* returns 5 */
	
	
Pix data types also use the “.” operator. Property access is used for pixels to both access the
individual color attributes (“red”, “green”, “blue”, and “alpha”) and to assign them to new values.

pix p = {255, #ff, 0, #aa};
p.red; /* returns 255 */
p.green; /* returns #ff */
p.blue; /* returns 0 */
p.alpha; /* returns #aa */

p.red = 0;
p; /* returns {0, #ff, 0, #aa} */

Finally, function calls are expressed using the function’s name followed by the postfix expression
“()”. Within the parentheses, a user may provide a list of the required parameters.

	 12	

Below is an example of defining a function called “foo” with arguments “int x”, “int y”, and “float
z”, which returns the value of “x + y + z” when the function is called.

function float foo(int x, int y, float z) {
 return x + y + z;
}

foo(5, 6, 7.0) /* returns 18.0 */

3.4.3. Mathematical Expressions
Mathematical expressions are evaluated in the standard order of operations: parentheses (seen
earlier), exponents, multiplication, division, addition, and subtraction. These operators are left-to-
right associative as in standard mathematics.

easel supports the following mathematical operations (in order of precedence):

Operation Symbol Example

Exponentiation ^ 2^3 /* returns 8 */

Multiplication * 2*3 /* returns 6 */

Division / 6/2 /* returns 3 */

Addition + 2+3 /* returns 5 */

Subtraction - 3-2 /* returns 1 */
	
3.4.3. Equivalence and Comparison
In easel expressions are compared before being tested for equality and they are evaluated left-to-
right. easel supports the follow relational operators (listed in order of precedence).

Operator Symbol Example

Less than < 4 < 5 /* returns true */

Greater than > 4 > 5 /* returns false */

Less than or equal to <= 4 <= 4 /* returns true */

Greater than or equal to >= 5 >= 4 /* returns true */

Equals == 4 == 4 /* returns true */

Not Equal != 3 != 3 /* returns false */

	 13	

Functions, whether anonymous or named, cannot be compared and will return an error (this is also
invalid syntax as functions are not considered expressions in easel).
	
3.4.4. Logical Expressions
Boolean values can be evaluated using the logical operators AND (“&&”) and OR (“||”). In logical
expressions, “&&” is given precedence. In the case of numbers as described above, all values not
equal to 0 are considered “TRUE” bool values and all values equal to 0 are considered “FALSE”.

3.4.5. Assignment
Assignment occurs by setting a variable on the left-hand side of an “=” to the value on the right-
hand side of the “=”. In addition to numeric literals, a variable can additionally be set to the value
of any valid mathematical expression.
	
int a = 10;
float b = 4.0 + 5.1;
float c;
a + b = c; /* fails with a parsing error; a variable being assigned must be on left side */
	
	
Pix values may be assigned to ints and vice versa. However, neither int nor pix values can be
assigned to floats and float values cannot be assigned to pix or int variables. This is meant to
discourage assignment of incompatible types to prevent loss of information-it may be overridden
using “return” statements in a function as a primitive cast (see section 3.6.1).

3.5. Statements
A general statement can be a declaration (which may include an expression), an expression by
itself, control statements, and loop statements for iterative processes. Declarations and expressions
must be followed by a semicolon. Control statements (if and if-else) and loop statements (for and
while) do not need to be followed by a semicolon.

3.5.1. If Statements
If statements provide a condition which evaluates to true or false. If true, a sequence of statements
in a region (bracketed on the left and right sides) will execute. If the expression is false, the region
is skipped and the next statement will proceed to execute.

If statements have the following form:
if (boolean-expression) { statements }

int x, y;
x = 10;
y = 20;
if (x < y) {
 x = x + 15;
}

	 14	

If the expression in parentheses is not a boolean expression, the program will not compile as an
explicit boolean expression must be used.

If the parentheses are empty, the compiler will provide a parsing error and the program will not
compile.
3.5.2. If-Else Statements
If-else statements offer an additional path following evaluation of the expression: if the boolean-
expression evaluates to true, the first statement region is executed and the second is ignored. If the
expression evaluates to false, the second statement region is executed and the first is ignored.
Following either of these two events, the next statement following the if-else statement will
proceed to execute.
If-else statements take the following form:
if (boolean-expression) { statements } else { statements }

int a = 10;
bool b = true;
if (b) {
 a = a + 2;
}
else {
 a = a - 2;
}

3.5.3. For Loops
For statements begin with an expression (meant to declare and initialize an iterator variable), run
a particular region of statements, evaluate another expression (meant to be a form of iterator) and
then check to see if a given condition is true (usually if the iterator has reached a certain threshold).

For loops take the following form:
for (expression1; expression2; expression3) { statements }
	
int i, int canv[10];
for (i = 0; i < 10; i++) {
 canv[i] = 255;
}
	
	
3.5.4. While Loops
While statements first check to see if a given expression evaluates to true and if so, it executes the
region. The expression is then evaluated at the conclusion of every iteration and if it continues to
be true, the region continues to be executed. When the expression evaluates to false, the region is
skipped and the following statement is executed.

While loops have the following form:
while (boolean-expression) { statements }
	

	 15	

int a = 0;
while (a < 10) {
 a++;
}
	
	
As in control statements (if and if-else), the boolean expression within parentheses must be a
boolean-expression or the program will not compile.

3.6. Functions
Functions form the foundation of easel’s functionality. A few important things to note:

1. Primitive elements are passed by value, while functions and arrays are passed by reference.
2. Functions may return a void data type, but void is not a valid data type for any other value.
3. Functions may be passed as arguments to other functions, either as a function literal /

anonymous function or simply as a named entity.
4. Functions may be called recursively, and can call any other functions defined in the global

scope.
5. If two functions within the global scope have the same name, the compiler will throw an

error.

3.6.1. Function Declarations and Definitions
When declared as part of the global statement flow of a program, functions must be defined at
declaration.

Function declarations have the following form:
function type name (function-parameter-list)

Only primitive types (i.e. bool, pix, int, and float) and void are considered valid return types.
Functions and arrays/matrices are not allowed as return types.

The function parameter list is composed of declarations, including declarations of other
functions. However, when passing arrays as arguments, the declaration is syntactically structured
slightly differently than statement declarations. Brackets are added following array’s type rather
than after the identifier:

function void userarr(int[] arr) {
 return 0;
} /* this is a valid function */

function void usearr(int arr[]) {
 return 0;
} /* this function is invalid and will throw a parsing error */

Matrices can also be passed into functions-however, the number of columns for any parameter
matrix must be declared within the function as an integer literal. This means that even variable
names with integer values are not permitted within a function declaration.

	 16	

function void usemat1(int[10][] mat) {
 /* body */
} /* this is a valid function */

function void usemat2(int[][] mat) {
 /* body */
} /* invalid; this will throw a parse error */

int j = 10;
function void usemat3(int[j][] mat) {
 /* body */
} /* invalid; this will throw a parse error */

To define a function as a parameter of another function, the following syntax is used for the
parameter:
function return-type (parameter-type list) function_name

function void takes_func(function int (int, int) passed_func, int x, int y) {
 passed_func(x,y);
}

	
In the above example, the void function takes_func accepts three arguments:

1. A function that returns an integer and takes two integers as parameters (passed_func)
2. An integer x
3. An integer y

takes_func then calls passed_func with arguments x and y.

As mentioned in a previous section, primitive values are passed by value, whereas arrays, matrices,
and functions are passed by reference. The most important implication of this is that the values
stored in arrays and matrices may be changed within a function call.
	
function void userarr(int[] firstarr, int l) {
 int i = 0;
 for (i; i < l; i++) {
 firstarr[i] = 4;
 }
}
int myarr[10]; /* default values set to 0 */
usearr(myarr, 10); /* all myarr values are now 4 */
	
	
The function definition is composed of a series of statements and optionally ends with the keyword
“return” and an expression. Functions are only able to return primitive values. Functions are
defined as:
{ statements return expression }
or
{ statements }

	 17	

If a return statement is not included, the function will return a value of “0”, cast to the function’s
return type, by default.

function float test(float a, float b) {
 a = a + 1.2;
 b = b - 2.7;
 return a + b;
}

An important note regarding the function’s return type: numeric types can return values of any
other numerical types. That is, a function returning a float value with a return statement returning
an int expression.

function float testa(int a) {
 return a;
}
testa(3); /* returns 3.0 */

function int testb(float a) {
 return a;
}
testb(3.4);
testb(3.5);
testb(3.6); /* all return 3 */

function float testc(pix a) {
 return a;
}
testc({#ff, #ff, #ff, #ff}); /* returns #ffffffff00000000 or -1.0 */

This can be exploited as a primitive form of casting.

A function can only be declared without definition when the function itself is being passed as an
argument to another function.

function void my_func(int x, int y, function int (int w, int z) operator) {
 /* body */
}

The “operator” function is thus declared as a parameter. Any function passed as the operator
parameter must have a matching return type and argument list or the program will be rejected by
the compiler. Note the syntactic difference with normal function declarations- the function id is
the last portion of the declaration.

3.6.2. Anonymous Functions
Functions may also take the form of function literals (AKA anonymous functions). These functions
differ from the standard form in that they are not named.

	 18	

Anonymous functions follow the format:
function type (function-parameter-list) { statements return expression }

function pix (bool b) { return !b; }

3.6.3. Invoking Functions
Functions can be called anywhere during statement flow. A function is called by using its name
and passing it arguments as defined by the function declaration.

A function call follows the following format:
function_name (argument-list);

function int add(int x, int y) {
 return x + y;
}
int a = add(3,2); /* a now equals 5 */

	
To pass another function to a function the function’s name can be provided as a parameter.
	
function void my_func(int x, int y, function int (int, int) operator) {
 /* body */
}
function int pass(int x, int y) {
 return x + y;
}
my_func(3,4,pass); /* returns 7 */ 	
	
The above will pass the function “pass” as a parameter to my_func. Alternatively, an anonymous
function can be passed to my_func. The functionality below is equivalent to the example above.
	
my_func(3, 4, function int (int x, int y){return x+y;});
	
3.6.4. Built-In Functions
Whereas many other languages have some mechanism of printing strings, easel’s built-in method
of output is drawing a canvas to the monitor.

easel has two different functions for drawing out to the screen. The signature of the first draw
function responsible for the drawing is:
draw(pix name[][], int x, int y);

The arguments are a 2-dimensional pixel matrix as well as an x and y value that determines where
the top left corner of the canvas window is placed. An easel program is ultimately about creating
this matrix of pixels using various functions or coding prowess to create a visual representation on
screen. The draw function will look up the matrix passed to it in the symbol table in order to
determine screen size.

	 19	

pix canv[900][1000];
draw(canv, 0, 0); /* this will draw a black canvas in the top left corner of the screen */
	
	
The other function used for drawing in easel is defined as:
draw_size(pix name[][], int w, int h, int x, int y);

The arguments are a 2-dimensional pixel matrix3 as well as an x and y value that determines where
the top left corner of the canvas window is placed. Additionally, there are w and h values that
specify the width and height of the canvas to be drawn out to the screen. Note that the width and
height passed to the function must match the width and height of the matrix passed or a user’s
program will crash.

Note: Draw can only be called once and should be the final statement in your program! Calling
draw multiple times will result in undefined behavior. A user executing a program that calls either
of the draw functions can end the program when the window containing the created image is
closed.

easel also offers a number of mathematical functions, including:
float tan(float x)
float sin(float x)
float cos(float x)
float log(float base, float value)
which allow the user to calculate more complicated geometric functions than the standard
arithmetic operators.

easel has a random number generator, which generates a floating point value between 0 and 1
inclusive. This value can be multiplied, added, or subtracted to in order to provide a random value
within a desired range.
float rando()

Finally, easel also has a random number generator that allows you to specify a seed.
float randos(int s)
	

4. Project Plan
At the beginning of the semester, we met as a group once per week. We initially had

meetings scheduled on either Monday’s or Wednesday’s directly after class (depending on other
scheduling conflicts). Shortly after we began having our weekly TA meetings on Monday
mornings, we found it more useful to have our group meetings directly after the TA meeting while
the new goals were still fresh in our minds and to maximize the amount of time for each party to
work on a newly assigned task. Additionally, as the semester progressed and deadlines were
approaching, we began to meet twice a week; these meetings were generally on weekends where

																																																								
3	This as well as the function draw_size are the only functions that take matrices without explicitly declared column
sizes.

	 20	

we would meet in a library for approximately four to five hours and have a pseudo-hackathon
where team members were allowed to come and go as necessary.

We prioritized our tasks and goals based on deadlines. During our preliminary meetings,
we brainstormed many ideas that we thought would be cool to implement and as the process went
on, we cut ideas that were not actually feasible in the given amount of time for this project - it is
much easier to have to many ideas and scale back than have too simple of a language and need to
scramble to add more features.

We started our scanner, parser, and abstract syntax tree as early as possible. We tried to
concurrently write the AST and language reference manual, thus ensuring that our language was
unambiguous and that our LRM was consistent with our AST. Because the core of our language
is similar to MicroC, we were able to get started rather easily by building off of the MicroC files.
We additionally began creating tests for checking that our AST was correct by starting to write our
test suite as soon as the initial AST, scanner, and parser files were completed. Once we began
adding new features to the language, such as the semantic checker and codegen, we already had a
basic test suite to begin building off of, which also helped streamline the process. We did run into
the issue of not starting our semantic checker early enough to finish it before the Hello World
milestone, so to meet our deadlines we worked through the first steps in codegen to create a Hello
World program and then spent the remainder of the semester working simultaneously on our
semantic checker and codegen. For these tasks, we essentially split the team up so half of the team
members focused on one file while the other half work on the other; this split helped speed up
writing because certain team members became experts on one file while the other team members
became experts on the other.

Although our team members had clear roles, we all contributed to the code. To coordinate
these contributions, we kept in constant contact through our Facebook group chat; our goal of this
was to avoid stepping on anyone’s toes or two people working on implementing the same feature
simultaneously. We kept track of progress and changes by creating a GitHub repository. To avoid
merge conflicts, all team members forked the code from Oswin’s repo and then created pull
requests so that he had final say in which files got merged and he could confirm as the system
architect that everything was as it should be. By communicating and giving one team member final
say in what gets merged, we kept all files organized and avoided any potential merge conflicts.

4.1 Programming Style Guide
OCaml:

• Keep lines of code to approximately 120 characters max
• For nested functions, indent line two spaces
• If a series of let or and statements are on top of each other (and all relating to the same

functionality), no additional indents are needed
• In match statements, the -> goes on the same line as the “match” phrase. The case matching

begins on the next line, four spaces in (starting with the name of the condition to be
matched). On the next line, the | begins two spaces in, with a space following the | so that
the second condition is in line with the first condition (and so on for all following cases to
match)

• A blank newline is entered between different functions that are connected by an “in”
• Only fully functioning code should be pushed to the master branch
• Use descriptive but short variable names where possible

	 21	

• Use underscores and lowercase letters for naming -- if the code is slightly altering one
particular variable, name the new variable the same name with a ‘ following (i.e. let var =
… in let var’ = …)

• Follow indentation styles of the section you’re adding to (even if it’s not correct) for
consistency and readability

• Comment out code that you believe is superfluous (or incorrect) if you did not write that
code and have no confirmation that the code is not needed

easel:

• Indent four spaces for functions and control flow
• Wrap (or split up) lines that are longer than approximately 120 characters
• For control flow, put opening brace on same line as statement (i.e. if (true) {) and match

indentation of closing brace with start of statement
• Declare functions and variables with descriptive names
• Declare multiple variables on the same line (where possible)
• Name variables with lowercase letters and underscores

4.2 Project Timeline
9/12: Team formed
9/14: First brainstorming meeting (looked into a few different ideas but did not settle on a topic
yet)
9/21: Roles assigned, final language idea agreed on, and langauge ideas fleshed out
9/28: Submitted our language proposal (we didn’t want to do too much work on any part of our
language before feedback from the proposal)
10/3: First TA meeting -- used this feedback to begin writing our LRM
10/12: First draft of our LRM uploaded by Tyrus for review by the team. Oswin created our GitHub
repo and began the scanner, parser, and AST
10/26: Final changes to the LRM completed by this date and the LRM is submitted. During this
time, continued working on AST, scanner, and parser to finalize ideas and remain consistent with
the LRM
11/5: Began working on the semantic checker (semant.ml) and fail cases. During this time, worked
on semantic checker, modified our LRM based on TA feedback, and wrote some test cases
11/16: Began working on codegen. Implemented the features needed for Hello World to run
11/20: Hello World program compiles and runs (without semantic checking). Also added new
output files to our test suite to ensure that our code was properly compiling down to LLVM IR on
files other than Hello World (it was!). We spent the next few weeks working both independently
and in meetings to get the rest of codegen and the semantic checker finished (working based on
TODO’s in the code and removing them when a task was implemented)
12/11: Our intended demo test program (the mandelbrot) is able to be rendered
12/15: Finished the semantic checker
12/16: Finished codegen and merged the two files onto the same branch. Dealt with problems that
arose there are fixed bugs while simultaneously working on the report and presentation
12/19: Presentation - all code and presentation slides must be completed

	 22	

4.3 Roles and Responsibilities
Although we all had specific roles, those positions were used more as a guideline of who

to ask questions to when stuck (for example, we went to Tyrus when we had questions about
language semantics and Oswin with problems about the code) and who had final say should any
conflicts arise about language functionality (although we had no real issues with this other than
Oswin reminding us that many features are not as easy to implement in OCaml as they were to
brainstorm).

Manager Danielle Crosswell

Language Guru Tyrus Cukavac

System Architect Yuan-Chao (Oswin) Chou

Tester Xiaofei (Sophie) Chen

4.4 Software Development Environment

• OCaml, with Ocamlyacc and Ocamllex for compiling the scanner and parser
• The LLVM Ocaml library: used within our ocaml programs to generate LLVM IR code
• LLC: used to compile generated LLVM code to unix object code
• GCC used to link compiled easel code without OpenGL wrapper (to provide graphics

output)
• Bash script to create the easel compiler collection, and automate compilation and

linking to a final easel program
• Ubuntu 16.04 Virtual Machine (provided by the TA’s): Use of the VM ensured all team

members were compiling with the same tools and in the same OS environment;
additionally, unix environment helped streamline the development and debugging
process

• OpenGL libraries as an API for graphics production
• Vim and Sublime: each team member used his/her own prefered text editor
• Git: used for version control
• GitHub: A centralized remote repository which allowed team members to work on

different branches while maintaining the integrity of the master branch of code

4.5 Project Log
Our GitHub commit log, excluding merge commits.

2016-12-19 b2f2e5e sophiechan - play with mandelbrot
2016-12-19 e5bbb72 sophiechan - operations on different types
2016-12-19 c492a73 sophiechan - checking different literal types
2016-12-18 2f79b4b sophiechan - modify test cases
2016-12-18 294e844 sophiechan - adding anonymous function test
2016-12-18 8c64988 Yuan Chao Chou - Merge pull request #59 from
 sophiechan/dev
2016-12-18 2aa4ce7 Yuan Chao Chou - Merge pull request #54 from
 dcrosswell/dev
2016-12-18 61f497c Danielle Crosswell - created new julia set demo

	 23	

2016-12-18 62a43c0 sophiechan - remove arraylit
2016-12-18 3572cea sophiechan - modify array test cases and ast
2016-12-18 2a9fa53 Oswin Chou - Add codegen to Makefile
2016-12-18 08195e1 sophiechan - modify fail cases
2016-12-18 72694ac sophiechan - modify fail cases
2016-12-18 b2fa488 sophiechan - unrecognized function failure
2016-12-18 5f30cb0 Oswin Chou - We assign variable with expression
 of the same type in easel
2016-12-18 54f5883 sophiechan - modify fail cases
2016-12-18 1175b5b Oswin Chou - Fix a test case output
2016-12-18 4a3c654 Oswin Chou - build_fneg for floats
2016-12-18 9f38862 Oswin Chou - Build another statement for
 assigning initializer to global var
2016-12-18 7e12ace Yuan Chao Chou - Merge pull request #56 from
 thc2125/dev
2016-12-18 641fd07 Tyrus Cukavac - Fixed a parse issue that allowed
 an array to be declared without an integer inside
 brackets
2016-12-18 bcc7f4f sophiechan - modify fail cases
2016-12-18 9f0e847 Tyrus Cukavac - Fixed an issue with "EleAt"
 wherein float array indices were allowed to
 compile
2016-12-18 a6858b7 sophiechan - modify fail cases
2016-12-18 9f90914 sophiechan - modify fail cases
2016-12-18 05fc580 Tyrus Cukavac - Fixed semant to allow for
 assignment of int values to floats
2016-12-18 172b969 sophiechan - unrecognized function failure
2016-12-18 2649ebd Tyrus Cukavac - Added printb function for
 booleans; fixed a semant error that allowed for n-
 dimensional matrices
2016-12-17 92ce123 Oswin Chou - Use property assignment in
 mandelbrot_anon.es
2016-12-17 a29bfad Oswin Chou - Support specifying window position
2016-12-17 ecb8420 Oswin Chou - Move samples for demo to the demo
 folder
2016-12-17 246b82b Oswin Chou - Trivial refinement for autotest.sh
2016-12-17 c516009 Oswin Chou - Add -o option and usage message for
 ecc.sh
2016-12-17 d4ed6ce Yuan Chao Chou - Merge pull request #55 from
 sophiechan/dev
2016-12-16 858adf0 sophiechan - modify ast pretty printing
2016-12-16 2096aa3 sophiechan - adding ast
2016-12-16 ec3ffa3 sophiechan - modifying functions in tests
2016-12-16 57beeda Danielle Crosswell - fixed hello world program
2016-12-16 15b4f18 Danielle Crosswell - run ecc.sh with -c or no
 options
2016-12-16 9b0fc94 sophiechan - adding ast files
2016-12-16 c63d0a4 Oswin Chou - Correct the output for tests/test-
 arr-args1.out
2016-12-16 9bb18ac sophiechan - negate pix values
2016-12-16 48ca4b7 sophiechan - modifying fail cases
2016-12-16 450faa9 Oswin Chou - 0 for fib(0)

	 24	

2016-12-16 b566ddb Oswin Chou - Flag functions that have been
 checked
2016-12-16 74b24e3 Oswin Chou - Fix some test cases
2016-12-16 1a6b3ab Tyrus Cukavac - Debug messages removed so
 compiler should work
2016-12-16 397a115 Tyrus Cukavac - Fixes to semant; Mandelbrot_anon
 now compiles; 5-argument draw function is now
 called "draw_size"
2016-12-16 17a83bb Oswin Chou - Patch print statements for
 tests/test-arith.es
2016-12-16 ea380cf Oswin Chou - Merge branch 'tyrant-dev' into dev
2016-12-16 923108d Oswin Chou - ArrLit is removed
2016-12-16 70acc18 Oswin Chou - Merge branch 'codegen' into dev
2016-12-16 ff5bcc8 Oswin Chou - Fix an API inconsistency problem
2016-12-16 bbb8448 Oswin Chou - Merge branch 'dev' of
 https://github.com/OswinC/easel into dev
2016-12-16 29cfd4f Yuan Chao Chou - Merge pull request #48 from
 dcrosswell/codegen
2016-12-16 8035282 Yuan Chao Chou - Merge pull request #47 from
 sophiechan/dev
2016-12-16 67e47d1 Yuan Chao Chou - Merge pull request #46 from
 sophiechan/dev
2016-12-16 47a814b Tyrus Cukavac - Fixed warnings in semant.ml
 except for arrlit based warnings
2016-12-16 c5be9bc Oswin Chou - Fix AST inconsistency problems
 caused by merging codegen & dev
2016-12-16 0af17ed Danielle Crosswell - commented out ArrLit and
 removed warning messages
2016-12-16 9266c49 sophiechan - add print functions to function
 table
2016-12-16 4249f4f Danielle Crosswell - added changing pixel value
 using property access
2016-12-16 c15afde sophiechan - remove unused function
2016-12-16 90ff103 sophiechan - exhaust all pattern matching
2016-12-16 8bb1c5f Oswin Chou - Unary mul, div, pow ops are removed
2016-12-16 b4851f0 Danielle Crosswell - working on prooacc for
 assign
2016-12-16 ba0ceb2 Oswin Chou - Merge branch 'codegen' into dev
2016-12-16 d9f1457 Oswin Chou - Add anonymous version of the
 mandelbrot sample code
2016-12-16 11cc12b Oswin Chou - Mandelbrot sample code using named
 function
2016-12-16 ff5b157 Oswin Chou - Revert an experimental change
2016-12-16 f58047f Oswin Chou - Some initial works for returning
 arrays
2016-12-16 2c6bbb0 Oswin Chou - Support building anonymous functions
2016-12-15 bb108aa Yuan Chao Chou - Merge pull request #45 from
 thc2125/dev
2016-12-15 ee64741 Oswin Chou - Revise the mandelbrot sample program
2016-12-15 b911c52 Oswin Chou - Fix a problem for passing array into
 functions
2016-12-15 1873246 Tyrus Cukavac - Might have made a mistake while

	 25	

 merging
2016-12-15 7b228c4 Tyrus Cukavac - Semant fully functional; all

 TODOs complete (pending additional requirements);
 arraylits removed

2016-12-15 c3948cf Danielle Crosswell - fixed declaration on same
 line as init
2016-12-15 5bcdadb Danielle Crosswell - removed some warnings in
 codegen
2016-12-15 7f7bcad Tyrus Cukavac - Next pass through on checking
 functions; may be reverting some issues as far as
 final ordering of check
2016-12-15 79c65f1 Yuan Chao Chou - Merge pull request #43 from
 dcrosswell/codegen
2016-12-15 5b925db Oswin Chou - Assign return name by judging on the
 return type
2016-12-15 fdb0e16 Danielle Crosswell - removed unary mult, div, and
 pow
2016-12-15 5597a0b Danielle Crosswell - debugged pix property access
 and added size operator
2016-12-15 91ab3f5 Tyrus Cukavac - More work done on function
 semantic checking; arrays are working properly,
 but now anonymous functions passed as formals need
 to be dealt with
2016-12-15 639e3f1 Danielle Crosswell - declare pix on same line as
 init
2016-12-14 29af96d Oswin Chou - Support passing arrays as parameters
2016-12-14 3bf7303 Oswin Chou - Remove a duplicate of expression
 building in building return
2016-12-14 86c8d7f Oswin Chou - Support building local variables of
 array types
2016-12-14 3cd2155 Oswin Chou - Code formating
2016-12-14 a6f20dc Oswin Chou - Change the naming of Arr to ArrRef
2016-12-14 6a2bf0c Oswin Chou - Revise the format for declaring
 arrays in the formal
2016-12-14 bcebc01 Oswin Chou - Change naming of Arr to ArrRef
2016-12-14 33d49c8 Tyrus Cukavac - Nearing completion of function
 semantic checking; issues with formal types
 sticking if type is array or matrix
2016-12-14 514ed1d Tyrus Cukavac - First pass at function call
 semantic checking; not functioning haha
2016-12-14 3e00a80 Tyrus Cukavac - Minor change to unary op checking
2016-12-14 702e425 Tyrus Cukavac - Added the pow, the two random
 functions, and the updated draw function names to
 semantic check
2016-12-14 b8b513c Tyrus Cukavac - ArrLit Semantic Checking now
 working as well
2016-12-14 05b5c8b Tyrus Cukavac - EleAt is now working with regards
 to arrays of arrays-still needs indices
2016-12-14 32ec099 Tyrus Cukavac - First pass at prop access
2016-12-14 93de37d sophiechan - check_assign for semantic check
2016-12-14 b2c27cc sophiechan - assign part for semantic check
2016-12-14 22b5ae4 sophiechan - array literal for semantic check

	 26	

2016-12-14 b2d5074 sophiechan - arraylit semantcheck
2016-12-14 20f343a sophiechan - modify semantic check
2016-12-14 540b602 Oswin Chou - Add singleton for checking system
2016-12-14 0341b38 Oswin Chou - Add semant.ml and testall.sh into
 Makefile
2016-12-14 58e2c75 Oswin Chou - Use function signature to check and
 build function table
2016-12-14 121bbf4 Oswin Chou - Revise the format for declaring
 arrays in the formal
2016-12-13 1649a94 Oswin Chou - Remove junk comments
2016-12-13 fef388c Oswin Chou - Minor changes for mandelbrot.es
2016-12-13 4dc5fac Oswin Chou - Support passing functions as
 parameters
2016-12-11 9a6d425 Tyrus Cukavac - ArrLit Semantic Checking now
 working as well
2016-12-11 1d88579 Tyrus Cukavac - First pass at prop access
2016-12-11 874a230 Oswin Chou - Update Pix literal usage
2016-12-11 d81df95 Oswin Chou - Revise mandelbrot programs
2016-12-11 69530be Oswin Chou - Two refinements in codegen
2016-12-11 ae1dab8 Oswin Chou - Add alpha channel into Pix literal
2016-12-11 cd07970 sophiechan - check_assign for semantic check
2016-12-11 7bb4bb7 sophiechan - assign part for semantic check
2016-12-10 3b3607b Yuan Chao Chou - Merge pull request #38 from
 thc2125/codegen
2016-12-10 b1cadc8 Tyrus Cukavac - Added random numbers and
 logarithms to codegen
2016-12-10 ad643ef Tyrus Cukavac - Merged with work from 12/9
2016-12-09 0e27672 Danielle Crosswell - started PropAcc functions
2016-12-09 92fcb75 Oswin Chou - Remove finished todos
2016-12-09 6f4576a Oswin - Merge pull request #36 from
 sophiechan/master
2016-12-09 93e6a8c Oswin - Merge pull request #35 from
 dcrosswell/codegen
2016-12-07 330e0b9 Danielle Crosswell - declare and initialize vars
 in the same line
2016-12-05 2ceeae7 Danielle Crosswell - removed warning messages for
 A.Call
2016-12-05 513a8c2 Danielle Crosswell - added trig functions
2016-12-05 41b6157 Oswin Chou - Add an easel sample code for drawing
 a mandelbrot
2016-12-05 09679b5 Oswin Chou - Add a test case for subtracting a
 float from an int
2016-12-05 2b06665 Oswin Chou - Support type promotion for binary
 operations
2016-12-05 e585a81 Oswin Chou - Add test case for return type
 promotion
2016-12-05 56a4584 Oswin Chou - Support return int by float and
 return float by int
2016-12-05 7138418 Oswin Chou - Support data type promotion for
 multiply operation
2016-12-05 35368e5 Oswin Chou - Reformat the byte-wise arrangement
 of pix

	 27	

2016-12-05 0c38217 Oswin Chou - Support pow of float to float
2016-12-05 6dbf478 Oswin Chou - Improve hello.es
2016-12-05 6872ec5 Danielle Crosswell - added if statements and
 fixed .out file
2016-12-05 ca63214 Oswin Chou - Merge branch 'dcrosswell-codegen'
 into codegen
2016-12-05 fc23867 sophiechan - Delete the main function
2016-12-04 0fc8ed7 Danielle Crosswell - unary operators A.pow
2016-12-04 da57aa2 Oswin Chou - Support basic function invoking
2016-12-04 f6008c6 sophiechan - array literal
2016-12-04 dc04765 sophiechan - array literal for semantic check
2016-12-04 67ca2bb sophiechan - Delete the main function
2016-12-04 5d40cf0 Oswin Chou - Support unary addition
2016-12-04 bd1f57f Oswin Chou - Support for loop and add some
 refinement
2016-12-04 c7f1e26 Tyrus Cukavac - Not and Neg unary operators
 functioning
2016-12-04 664a78d Tyrus Cukavac - All binary operators functioning
 (unstable, noncomprehensively tested)
2016-12-04 a5d2389 Tyrus Cukavac - Not and Neg unary operators
 functioning
2016-12-04 2f0dd36 Oswin - Merge pull request #28 from
 thc2125/codegen
2016-12-04 f2e5ea4 Tyrus Cukavac - First pass at binops; merged with
 DC's assignment code
2016-12-04 3bbe99a Tyrus Cukavac - First pass at basic binops
2016-12-04 171ec03 Oswin - Merge pull request #27 from
 thc2125/codegen
2016-12-04 6eab491 Oswin - Merge pull request #26 from
 dcrosswell/codegen
2016-12-04 a2e4eab Oswin Chou - Fix bug- should use the resulting
 builder for building termination block
2016-12-04 c75e88d Oswin Chou - Add codegen code for while statement
2016-12-04 0167aa5 Tyrus Cukavac - Minor tweak to line 190
2016-12-04 d222c6f Danielle Crosswell - added array assignment and
 access
2016-12-04 46ab5b6 Tyrus Cukavac - Added support for pixel and float
 assignment
2016-12-04 d647de3 Danielle Crosswell - fixed codegen merging
 conflicts
2016-12-04 0f71b09 sophiechan - modify semantic check
2016-12-04 18dea95 Danielle Crosswell - started func declarations,
 while loop, cleaned up code
2016-12-02 cd1ada6 Danielle Crosswell - worked on while and func
 body
2016-11-29 cecfcbf Oswin - Merge pull request #23 from
 dcrosswell/codegen
2016-11-28 5582cb7 Danielle Crosswell - started working on array
 assignment
2016-11-28 41e8519 Danielle Crosswell - working on array assignemnts
2016-11-28 762a1b6 Oswin Chou - Don't have to manually number the
 register naming

	 28	

2016-11-28 ea3bf2c Oswin Chou - Support building and looking up
 local symbol table
2016-11-22 6a477f4 Danielle Crosswell - started assignment in
 codegen
2016-11-22 2429dd9 sophiechan - Add the output files for test cases
2016-11-22 877dc2a Oswin - Merge pull request #19 from
 dcrosswell/codegen
2016-11-22 d0d716a Danielle Crosswell - remove .ll and .out files on
 make clean
2016-11-22 f86aa11 Oswin Chou - Minor typos
2016-11-22 b4b342f Oswin Chou - Compile before start testing
2016-11-22 d0bf17d Oswin - Correct a new section formating for
 README.md
2016-11-22 f884b82 Oswin Chou - More formating for README.md
2016-11-22 af3b678 Oswin Chou - Modify README.md and format it by
 the Github Markdown syntax
2016-11-22 73ad2f5 Tyrus Cukavac - modified autotest with ecc
 compiling 'hello'
2016-11-22 c53e79e Tyrus Cukavac - Added a few new instructions for
 README; formatted markdown slightly
2016-11-22 364c571 Oswin Chou - Enable compilation tests
2016-11-22 3db1f94 Oswin Chou - Add print function and two test
 cases
2016-11-22 edc31d3 Danielle Crosswell - fixed codegen merge issues
2016-11-22 6530ccc Oswin Chou - Add comments for explaining the code
 in hello.es
2016-11-22 c8c189f Oswin Chou - Add and modify glwrap apps
2016-11-22 b78d5f1 Oswin Chou - Support passing a matrix into draw()
2016-11-21 1a817dd Oswin Chou - Statements should be reversed to get
 the correct order
2016-11-21 f896359 Oswin Chou - Add clean rule for glwrap/Makefile
2016-11-21 4ac02da Danielle Crosswell - Merge remote-tracking branch
 'upstream/codegen' into codegen
2016-11-21 0ce8c1c Oswin Chou - Add hello.ll for temporalily testing
 purpose
2016-11-20 47f7058 Oswin Chou - Add declaration for do_draw(...)
2016-11-20 d1a3d0c Oswin Chou - Rename ltype_* to lltype_* so not
 confusing with left value
2016-11-20 e274d2f Oswin Chou - Make dumbhello.es less dumb
2016-11-20 9fd12b2 Oswin Chou - Support global declaration and array
 types
2016-11-20 259322a Oswin Chou - Remove initializer from the simple
 hello world
2016-11-20 feb85e7 sophiechan - simple script for hello world
 program
2016-11-20 1e13a78 Oswin Chou - Remove libglwrap.a from the top
 directory
2016-11-20 2f07476 Oswin Chou - Copy libglwrap.a to the top folder
 after compiled
2016-11-20 f8b38ce Tyrus Cukavac - Some additions to codegen.ml-
 early stages of stmts
2016-11-20 21b2bbb Tyrus Cukavac - Tweaked pixel literals slightly

	 29	

 so its a little more structured
2016-11-20 1650147 Oswin Chou - Remove a debug message
2016-11-20 9428559 Oswin Chou - Shut off debug messages in glwrap.c
 with macros
2016-11-20 d6b22bb Oswin Chou - Simplify apps/hello.ll
2016-11-20 ed1eee5 Oswin Chou - Add Makefile for glwrap
2016-11-19 6fc392c Oswin Chou - Rename opengl/ to glwrap/
2016-11-19 dd534f4 Oswin Chou - Reorganize glwrap and add hello.ll
 for calling glwrap
2016-11-19 2f5eddd Oswin Chou - Rename testall.sh to autotest.sh
2016-11-19 bd740f2 Oswin Chou - Reorganize the folder structure of
 tests/
2016-11-19 6968760 Oswin Chou - Add wrapper for opengl and an app
 that uses it
2016-11-19 b8e1469 Danielle Crosswell - modify codegen and easel for
 hello world
2016-11-19 b08eeaa Oswin - Merge pull request #12 from
 thc2125/codegen
2016-11-19 cc38899 Tyrus Cukavac - 1st attempt at getting basic
 codegen working
2016-11-19 ae4b119 Oswin - Merge pull request #10 from
 dcrosswell/codegen
2016-11-19 6ffed7a Danielle Crosswell - arrays in codegen
2016-11-19 465163e Danielle Crosswell - added array functionality to
 codegen
2016-11-19 d8ea412 Oswin Chou - Add hello world sample code
2016-11-19 ca93c66 Danielle Crosswell - created codegen file and
 started expressions
2016-11-16 969c983 Oswin Chou - [] are used for arrays in easel
2016-11-16 5fa9502 Danielle Crosswell - modified .err files for some
 fail cases
2016-11-16 5f1ae69 Danielle Crosswell - created .err files for fail
 cases and fixed bugs in some files
2016-11-16 dc93517 Danielle Crosswell - started fail cases for
 assignment and expressions
2016-11-09 4e28d35 Danielle Crosswell - modified .err files for some
 fail cases
2016-11-09 3e30018 Danielle Crosswell - created .err files for fail
 cases and fixed bugs in some files
2016-11-08 31c67aa Oswin Chou - Add singleton for checking system
2016-11-08 4e161b2 Oswin Chou - Add semant.ml and testall.sh into
 Makefile
2016-11-08 073983e Oswin Chou - Use function signature to check and
 build function table
2016-11-08 602199f Oswin Chou - Add code for testing fail cases
2016-11-07 6ed89bc Oswin Chou - "%%" operator is not supported in
 easel
2016-11-07 a5f22a2 Tyrus Cukavac - No more mod_expr-conforms to
 mult_exprs
2016-11-07 6169763 Tyrus Cukavac - Added minor modulus test in
 test.es
2016-11-07 c0cb76e Tyrus Cukavac - Add mod operator to scanner

	 30	

 parser
2016-11-07 b2494df Tyrus Cukavac - Added grammar reference for
 convenience
2016-11-07 1fe63b3 sophiechan - Adding arithmatic ast tests and
 float ast tests
2016-11-01 b2542cf Danielle Crosswell - created semant.ml
2016-11-01 acf8497 Oswin Chou - Ignore spaces and newlines for the
 diff in testall.sh
2016-11-01 c9baa51 Oswin Chou - Merge branch 'sophie-master'
2016-11-01 62cac3e Oswin Chou - Fix some test cases
2016-11-01 b3856d9 Oswin Chou - Merge branch 'master' of
 git://github.com/sophiechan/easel into sophie-
 master
2016-11-01 1415621 Oswin Chou - Fix .gitignore
2016-11-01 f93fc39 sophiechan - modify the cirfun ast
2016-11-01 639c7c6 Oswin Chou - Add test-floatlit1.ast for test-
 floatlit1.es
2016-11-01 de8f088 sophiechan - add test ast
2016-11-01 5287506 Oswin Chou - Only ignore .ast and .diff at top
 directory
2016-11-01 240d2c0 Oswin - Merge pull request #2 from
 sophiechan/master
2016-11-01 3216027 sophiechan - adding test cases
2016-10-31 6167135 Tyrus Cukavac - Merge branch 'master' of
 https://github.com/OswinC/easel
2016-10-31 c73dd15 Oswin Chou - Minor changes in README
2016-10-31 75d1201 Oswin Chou - Add README.md
2016-10-30 638ec82 Oswin Chou - Add anonymous version of the sqaure
 example
2016-10-30 c22e2b2 Oswin Chou - Initial framework of testing system
2016-10-30 f1b1f3a Oswin Chou - Refine pretty printing
2016-10-30 e3ccc39 Oswin Chou - Add a sample code for drawing a
 square
2016-10-30 a48f628 Oswin Chou - Parse pix literals and remove some
 epsilon rules
2016-10-30 5a50b05 Oswin Chou - Some initial work for parsing n-ple
 literal
2016-10-30 b9d419e Tyrus Cukavac - Removed my test text file
2016-10-30 d916e36 Tyrus Cukavac - Added grammar reference for
 convenience
2016-10-30 ff3c2ae Tyrus Cukavac - test
2016-10-30 ce748d0 Oswin Chou - Parse array literals
2016-10-30 a4655b6 Oswin Chou - Parse hexadecimal literals
2016-10-30 5fd54dd Oswin Chou - Don't need these precedence level
 assignments
2016-10-30 f87456a Oswin Chou - Allow assign_expr expand to
 assign_expr
2016-10-30 6f1a521 Oswin Chou - Parse the dot property accessor
2016-10-30 02af60d Oswin Chou - Reverse back the order of
 formals/aformals on assignment
2016-10-30 f1d339e Oswin Chou - Refine the pretty printing for
 anonymous functions

	 31	

2016-10-30 af171b0 Oswin Chou - Left-associative is correct for
 exp_expr
2016-10-30 cbb1451 Oswin Chou - Fix a trivial typo
2016-10-29 268d260 Oswin Chou - Parse declaration of anonymous
 function
2016-10-29 0c9e353 Oswin Chou - Use Ocaml's "and" keyword to allow
 mutual reference
2016-10-29 a9adb9f Oswin Chou - Add a test case for parsing function
 as a formal
2016-10-29 27762bf Oswin Chou - Parse anonymous function type
2016-10-29 fc39f7e Oswin Chou - Add parsing rules for expressions
2016-10-29 04a3e0d Oswin Chou - Remove *.output for make clean
2016-10-29 6b57dd8 Oswin Chou - Parse the arrays in function
 signature
2016-10-29 9de3bec Oswin Chou - Support parsing array declaration
2016-10-27 07c387f Oswin Chou - Refinement for printing formals
2016-10-26 35ed002 Oswin Chou - Parse float literals
2016-10-26 c6b37f3 Oswin Chou - Make the code parsing bool less
 redundant
2016-10-26 fb0e0a6 Oswin Chou - Parse float and pix keywords
2016-10-26 5a14532 Oswin Chou - Add comments in the easel testing
 file
2016-10-26 d33257d Oswin Chou - Support parsing variable
 definition/declaration
2016-10-25 31ebb9f Oswin Chou - Support nested comment
2016-10-25 c942206 Oswin Chou - Remove tailing whitespaces
2016-10-25 490a66a Oswin Chou - Add OpenGL sample code
2016-10-12 40cdeac Oswin Chou - Ignore built files
2016-10-12 7e02625 Oswin Chou - Add an easel source file for testing
2016-10-12 af7f978 Oswin Chou - Parse the keyword "function" for
 recognizing a function
2016-10-12 ac0c506 Oswin Chou - Refine the printing output for AST
2016-10-12 ebacc66 Oswin Chou - Support putting statements in the
 global scope
2016-10-12 2b6eed1 Oswin Chou - The story of easel starts here

	 32	

5. Architectural Design

	 33	

5.1. Top Level (easel.ml)
“easel.ml” marks the starting point of the compiler. It defines the different compiler options

“-a” for Ast, “-l” for LLVM IR, and -”c” for compile. If no options are provided to easel.native,
then the compile option is selected by default. Immediately following a determination of compiler
options, a program (provided to easel by stdin) is scanned and parsed. The program is then
semantically checked to ensure there are no mismatched types in assignment, function calls, or
within expressions. Depending on the user-provided option, the compiler will do the following:
 -a: the AST option essentially takes the abstract syntax tree and re-prints it in a program-like
representation.
 -l: The LLVM option will generate the LLVM code, utilizing codegen (outputting to stdout on
unix machines). The LLVM IR string will not be checked for any irregularities.
 -c: The Compile option will generate the LLVM IR code and then check it for any irregularities.
The Code will then be output on stdout.

5.2. Scanner (scanner.mll)

The scanner will take a Lexer buffer read from a given “.es” file by the Lexing module and
tokenize it into the various:
 Operators (+, -, *, /, etc.)
 Literals (int, pix, float, bool, function)
 Separators (brackets, braces, semi-colons, commas, etc.)

Comments (nested and otherwise) and whitespace are removed from the program as well,

leaving a purely tokenized program. These tokenized values are then passed to the parser.

5.3. Parser (parser.mly) and Abstract Syntax tree (ast.ml)

The parser (parser.mly) is given a tokenized program and builds the abstract syntax tree as
defined by ast.ml. The primary separators are semicolons (“;”) and braces (“{}”) which are used
to break the program into statements and blocks respectively. Within statements are declarations,
control statements, loop statements, and expressions, which are composed of various
mathematical/numerical operators. Blocks are used to define the scopes of local variables, the
bodies of control statements and loops, as well as functions.
 Functions are represented in OCaml by a record which contains information about the
function’s return type, name, formals (i.e. parameters), body, and a boolean value to indicate
whether or not it has been checked by the semantic checker. Ultimately, a list of function
declarations and a list of global statements are created and represent the final program.

5.4. Semantic Checker (semant.ml)
 The above-mentioned lists of function declarations and global statements are then passed
to the semantic checker. It takes the function list and converts it to a map of strings which utilizes
each function’s name as its key. The semantic checker then passes through the list of global
statements. It ensures any variable definitions occur between matching (or acceptably matching)
types while also raising errors if it finds any invalid types (such as void). Moreover, any declared
variables are added to a hash table of global functions. Expressions within statements, such as
those utilizing binary operators or property access variables such as “red” or “size”, are also
checked to ensure these operations are only performed on the appropriate types. Assignment

	 34	

operations (those utilizing a “=” symbol) also ensure that a given variable exists in the global hash
table, otherwise an error is raised and compilation stops.
 While passing through global statements, the semantic checker also identifies any function
calls. If a function is called, the semantic checker looks for it in the list of function declarations,
raising an error if it does not exist. If it is in the list of declarations, the semantic checker proceeds
to check the function. This is done by first ensuring all formals (parameters) are valid types to be
passed, then by checking the statements within the function’s body. As variables are declared
within a function body, they are added to a map of strings holding local variables and their given
type. This list is checked (in addition to the global hash table) upon encountering any assignments
within the function body.
 Of particular interest during the semantic check of functions is the analysis of anonymous
functions used as formals. These, like traditional variable formals, are added to a list of “local
functions”. This list is now checked in addition to the list of global function declarations when a
function call occurs within the function.
 All statements within a function body are examined in the same manner. If a function
passes the check without any type mismatches, that functions “checked” variable will be marked
as true to prevent a later redundant function check. Once all statements have been checked, any
functions that were not called by the global environment are also checked to ensure semantic
consistency. If an error is raised, compilation stops, even though the function is unused. This is to
ensure that only well-formed programs are compiled by easel.

5.5. Code Generation (codegen.ml)
 The code generator plays the role of translating the given abstract syntax tree into LLVM
IR. The entire building process is performed by iterating through the statements, which construct
functions. Expressions are the basic building blocks of easel, and they are evaluated for generating
the LLVM IR code, and return the corresponding LLVM address. Variable declarations are defined
as a subset of statements, so variables are built and stored in symbol tables during the iteration of
building statements.
 Because statements are allowed to be put in the global scope (thus so-called global
statements) in easel, and the entry point of an easel program is the first global statement, we create
a built-in main function for each easel program and wrap the global statements in the main function
as the entry for the executable. The statements of the main function and programmer-defined
functions are then iterated through and the LLVM IRs are generated accordingly. During the
building process, anonymous functions are defined, named by a string composed of a reserved
keyword (____ReSeRvEd_AnOnYmOuS_fUnC__) and a sequential number. They are then
collected in another map upon matching the anonymous function’s AST. This map is then iterated
through by applying the same process after the main and named functions are built.
 Any variables declared within a block are local variables, which live until the end of the
block, and are replaced by the local variables declared in the sub-blocks with the same name during
the lifetime of the later-defined variable. To cope with this dynamic environment, we take
advantage of the immutable nature of OCaml’s Map. Additionally, we utilize the fact that the entry
and the exit of a block flag the start and the end of the lifetime of the local symbol table to manage
local variables with the fewest lines of code as possible. Upon entering a block, the symbol table
of its parent block is passed in and referenced for creating a new symbol table whenever it
evaluates a variable declaration statement. This newly created symbol table is then returned as the

	 35	

basis for declaring variables in following statements. Upon leaving this block, the symbol table is
simply discarded and the parent block’s symbol table stay unchanged.
 Finally, the created LLVM module is translated to a string of LLVM IR and the string is
printed as the output of easel.native.

5.6. The easel compiler collection (ecc.sh) and the OpenGL wrapper (glwrap.c)

easel is dependent on external, low-level functions in order to produce the screen images
for which the language was made. We chose to use OpenGL as an API to produce the images.
Consequently, the easel.native compiler will produce the LLVM code representing the primary
easel program, but an additional linker is required to link this program with the functions used in
our OpenGL wrapper (written in C).

The “ecc.sh” script automates this entire process, taking as arguments options for the
easel.native compiler as well as the filepath to the “.es” file to be compiled. “ecc.sh” runs
easel.native with the given option -a, -l, or -c (the default if no options are given). Given the -a
option, the AST string produced by easel.native will be output to a file with the given filename
and extension “.ast”. Utilizing the -l option prompts easel.native to generate the LLVM string into
a file with the given filename and extension “.ll”. Finally, the -c option generates a checked version
of the LLVM string which is then output as a “.ll” file. This file is compiled into assembly code
(“.s”) by the LLVM compiler LLC, and then compiled to an object and linked with the compiled
“glwrap” library, which defines the draw functions used by easel. ecc.sh removes the leftover
LLVM and assembly files, leaving an executable with the same base filename as that of the original
.es file.

5.7. Implementation Roles

Code Author(s)

Makefile in easel/ Oswin, Danielle, Sophie

Makefile in glwrap/ Oswin

scanner.mll Oswin, Tyrus

parser.mly Oswin, Tyrus, Danielle

ast.ml Oswin, Tyrus, Danielle, Sophie

semant.ml Oswin, Tyrus, Sophie

codegen.ml Oswin, Danielle, Tyrus

easel.ml Oswin, Danielle, Sophie, Tyrus

autotest.sh Oswin, Sophie

ecc.sh Sophie, Danielle

glwrap.c Oswin, Tyrus

	

	 36	

6. Test Plan
6.1 Source Language and Generated Programs
	
/* mandelbrot_anon.es */ 1	
pix canvas[960][840]; 2	
int W = 960, H = 840; 3	
 4	
function pix[960][] graph(pix[960][] canv, int w, int h, function pix (int, int) painter) { 5	
 int x, y; 6	
 for (y = 0; y < h; y++) { 7	
 for (x = 0; x < w; x++) { 8	
 canv[x][y] = painter(x, y); 9	
 } 10	
 } 11	
 return canv; 12	
} 13	
 14	
function int red(int x, int y) { 15	
 float a = 0., b = 0., c, d, n = 0.; 16	
 while ((c = a * a) + (d = b * b) < 4. && n++ < 880.) { 17	
 b = 2. * a * b + y * 8e-9 - .645411; 18	
 a = c - d + x * 8e-9 + .356888; 19	
 } 20	
 return 255 * (((n - 80.)/800.) ^ 3.); 21	
} 22	
 23	
function int green(int x, int y) { 24	
 float a = 0., b = 0., c, d, n = 0.; 25	
 while ((c = a * a) + (d = b * b) < 4. && n++ < 880.) { 26	
 b = 2. * a * b + y * 8e-9 - .645411; 27	
 a = c - d + x * 8e-9 + .356888; 28	
 } 29	
 return 255 * (((n - 80.)/800.) ^ .7); 30	
} 31	
 32	
function int blue(int x, int y) { 33	
 float a = 0., b = 0., c, d, n = 0.; 34	
 while ((c = a * a) + (d = b * b) < 4. && n++ < 880.) { 35	
 b = 2. * a * b + y * 8e-9 - .645411; 36	
 a = c - d + x * 8e-9 + .356888; 37	
 } 38	
 return 255 * (((n - 80.)/800.) ^ .5); 39	
} 40	
 41	
draw_size(graph(canvas, W, H, function pix (int x, int y) { 42	
 pix p = 0; 43	
 p.red = red(x, y); 44	
 p.green = green(x, y); 45	
 p.blue = blue(x, y); 46	
 return p; 47	
}), W, H, 200, 0); 48	

	
Figure	1:	mandelbrot_anon	easel	code	

	

	 37	

; ModuleID = 'easel'

@canvas = global [840 x [960 x i32]] zeroinitializer

@W = global i32 0

@H = global i32 0

define i32 @blue(i32 %x, i32 %y) {

entry:

 %x1 = alloca i32

 store i32 %x, i32* %x1

 %y2 = alloca i32

 store i32 %y, i32* %y2

 %a = alloca double

 store double 0.000000e+00, double* %a

 %b = alloca double

 store double 0.000000e+00, double* %b

 %c = alloca double

 store double 0.000000e+00, double* %c

 %d = alloca double

 store double 0.000000e+00, double* %d

 %n = alloca double

 store double 0.000000e+00, double* %n

 br label %while

while: ; preds = %while_body, %entry

 %a19 = load double, double* %a

 %a20 = load double, double* %a

 %tmp21 = fmul double %a19, %a20

 store double %tmp21, double* %c

 %b22 = load double, double* %b

 %b23 = load double, double* %b

 %tmp24 = fmul double %b22, %b23

 store double %tmp24, double* %d

 %tmp25 = fadd double %tmp21, %tmp24

 %tmp26 = fcmp olt double %tmp25, 4.000000e+00

 %n27 = load double, double* %n

 %n28 = load double, double* %n

 %tmp29 = fadd double %n28, 1.000000e+00

 store double %tmp29, double* %n

 %tmp30 = fcmp olt double %n27, 8.800000e+02

 %tmp31 = and i1 %tmp26, %tmp30

 br i1 %tmp31, label %while_body, label %merge

while_body: ; preds = %while

 %a3 = load double, double* %a

 %tmp = fmul double 2.000000e+00, %a3

 %b4 = load double, double* %b

 %tmp5 = fmul double %tmp, %b4

 %y6 = load i32, i32* %y2

 %tmp7 = sitofp i32 %y6 to double

 %tmp8 = fmul double %tmp7, 8.000000e-09

 %tmp9 = fadd double %tmp5, %tmp8

 %tmp10 = fsub double %tmp9, 6.454110e-01

 store double %tmp10, double* %b

 %c11 = load double, double* %c

 %d12 = load double, double* %d

 %tmp13 = fsub double %c11, %d12 	

	 38	

 %x14 = load i32, i32* %x1
 %tmp15 = sitofp i32 %x14 to double
 %tmp16 = fmul double %tmp15, 8.000000e-09
 %tmp17 = fadd double %tmp13, %tmp16
 %tmp18 = fadd double %tmp17, 3.568880e-01
 store double %tmp18, double* %a
 br label %while

merge: ; preds = %while
 %n32 = load double, double* %n
 %tmp33 = fsub double %n32, 8.000000e+01
 %tmp34 = fdiv double %tmp33, 8.000000e+02
 %tmp35 = call double @pow(double %tmp34, double 5.000000e-01)
 %tmp36 = fmul double 2.550000e+02, %tmp35
 %tmp37 = fptosi double %tmp36 to i32
 ret i32 %tmp37
}

define i32 @green(i32 %x, i32 %y) {
entry:
 %x1 = alloca i32
 store i32 %x, i32* %x1
 %y2 = alloca i32
 store i32 %y, i32* %y2
 %a = alloca double
 store double 0.000000e+00, double* %a
 %b = alloca double
 store double 0.000000e+00, double* %b
 %c = alloca double
 store double 0.000000e+00, double* %c
 %d = alloca double
 store double 0.000000e+00, double* %d
 %n = alloca double
 store double 0.000000e+00, double* %n
 br label %while

while: ; preds = %while_body, %entry
 %a19 = load double, double* %a
 %a20 = load double, double* %a
 %tmp21 = fmul double %a19, %a20
 store double %tmp21, double* %c
 %b22 = load double, double* %b
 %b23 = load double, double* %b
 %tmp24 = fmul double %b22, %b23
 store double %tmp24, double* %d
 %tmp25 = fadd double %tmp21, %tmp24
 %tmp26 = fcmp olt double %tmp25, 4.000000e+00
 %n27 = load double, double* %n
 %n28 = load double, double* %n
 %tmp29 = fadd double %n28, 1.000000e+00
 store double %tmp29, double* %n
 %tmp30 = fcmp olt double %n27, 8.800000e+02
 %tmp31 = and i1 %tmp26, %tmp30
 br i1 %tmp31, label %while_body, label %merge

while_body: ; preds = %while
 %a3 = load double, double* %a 	

	 39	

 %tmp = fmul double 2.000000e+00, %a3
 %b4 = load double, double* %b

 %tmp5 = fmul double %tmp, %b4
 %y6 = load i32, i32* %y2
 %tmp7 = sitofp i32 %y6 to double
 %tmp8 = fmul double %tmp7, 8.000000e-09

 %tmp9 = fadd double %tmp5, %tmp8
 %tmp10 = fsub double %tmp9, 6.454110e-01
 store double %tmp10, double* %b
 %c11 = load double, double* %c

 %d12 = load double, double* %d
 %tmp13 = fsub double %c11, %d12
 %x14 = load i32, i32* %x1
 %tmp15 = sitofp i32 %x14 to double

 %tmp16 = fmul double %tmp15, 8.000000e-09
 %tmp17 = fadd double %tmp13, %tmp16
 %tmp18 = fadd double %tmp17, 3.568880e-01
 store double %tmp18, double* %a

 br label %while

merge: ; preds = %while
 %n32 = load double, double* %n

 %tmp33 = fsub double %n32, 8.000000e+01
 %tmp34 = fdiv double %tmp33, 8.000000e+02
 %tmp35 = call double @pow(double %tmp34, double 7.000000e-01)
 %tmp36 = fmul double 2.550000e+02, %tmp35

 %tmp37 = fptosi double %tmp36 to i32
 ret i32 %tmp37
}

define i32 @red(i32 %x, i32 %y) {
entry:
 %x1 = alloca i32
 store i32 %x, i32* %x1

 %y2 = alloca i32
 store i32 %y, i32* %y2
 %a = alloca double
 store double 0.000000e+00, double* %a

 %b = alloca double
 store double 0.000000e+00, double* %b
 %c = alloca double
 store double 0.000000e+00, double* %c

 %d = alloca double
 store double 0.000000e+00, double* %d
 %n = alloca double
 store double 0.000000e+00, double* %n

 br label %while

while: ; preds = %while_body, %entry
 %a19 = load double, double* %a

 %a20 = load double, double* %a
 %tmp21 = fmul double %a19, %a20
 store double %tmp21, double* %c
 %b22 = load double, double* %b

 %b23 = load double, double* %b
 %tmp24 = fmul double %b22, %b23
 store double %tmp24, double* %d 	

	 40	

 %tmp25 = fadd double %tmp21, %tmp24
 %tmp26 = fcmp olt double %tmp25, 4.000000e+00

 %n27 = load double, double* %n
 %n28 = load double, double* %n
 %tmp29 = fadd double %n28, 1.000000e+00
 store double %tmp29, double* %n

 %tmp30 = fcmp olt double %n27, 8.800000e+02
 %tmp31 = and i1 %tmp26, %tmp30
 br i1 %tmp31, label %while_body, label %merge

while_body: ; preds = %while
 %a3 = load double, double* %a
 %tmp = fmul double 2.000000e+00, %a3
 %b4 = load double, double* %b

 %tmp5 = fmul double %tmp, %b4
 %y6 = load i32, i32* %y2
 %tmp7 = sitofp i32 %y6 to double
 %tmp8 = fmul double %tmp7, 8.000000e-09

 %tmp9 = fadd double %tmp5, %tmp8
 %tmp10 = fsub double %tmp9, 6.454110e-01
 store double %tmp10, double* %b
 %c11 = load double, double* %c

 %d12 = load double, double* %d
 %tmp13 = fsub double %c11, %d12
 %x14 = load i32, i32* %x1
 %tmp15 = sitofp i32 %x14 to double

 %tmp16 = fmul double %tmp15, 8.000000e-09
 %tmp17 = fadd double %tmp13, %tmp16
 %tmp18 = fadd double %tmp17, 3.568880e-01
 store double %tmp18, double* %a

 br label %while

merge: ; preds = %while
 %n32 = load double, double* %n

 %tmp33 = fsub double %n32, 8.000000e+01
 %tmp34 = fdiv double %tmp33, 8.000000e+02
 %tmp35 = call double @pow(double %tmp34, double 3.000000e+00)
 %tmp36 = fmul double 2.550000e+02, %tmp35

 %tmp37 = fptosi double %tmp36 to i32
 ret i32 %tmp37
}

define [960 x i32]* @graph([960 x i32]* %canv, i32 %w, i32 %h, i32 (i32, i32)* %painter) {
entry:
 %canv1 = alloca [960 x i32]*
 store [960 x i32]* %canv, [960 x i32]** %canv1

 %w2 = alloca i32
 store i32 %w, i32* %w2
 %h3 = alloca i32
 store i32 %h, i32* %h3

 %painter4 = alloca i32 (i32, i32)*
 store i32 (i32, i32)* %painter, i32 (i32, i32)** %painter4
 %x = alloca i32
 store i32 0, i32* %x

 %y = alloca i32
 store i32 0, i32* %y
 store i32 0, i32* %y 	

	 41	

 br label %while

while: ; preds = %merge, %entry
 %y24 = load i32, i32* %y
 %h25 = load i32, i32* %h3
 %tmp26 = icmp slt i32 %y24, %h25
 br i1 %tmp26, label %while_body, label %merge27

while_body: ; preds = %while
 store i32 0, i32* %x
 br label %while5

while5: ; preds = %while_body6, %while_body
 %x18 = load i32, i32* %x
 %w19 = load i32, i32* %w2
 %tmp20 = icmp slt i32 %x18, %w19
 br i1 %tmp20, label %while_body6, label %merge

while_body6: ; preds = %while5
 %canv7 = load [960 x i32]*, [960 x i32]** %canv1
 %y8 = load i32, i32* %y
 %canv9 = getelementptr inbounds [960 x i32], [960 x i32]* %canv7, i32 %y8
 %x10 = load i32, i32* %x
 %canv11 = getelementptr inbounds [960 x i32], [960 x i32]* %canv9, i32 0, i32 %x10
 %painter12 = load i32 (i32, i32)*, i32 (i32, i32)** %painter4
 %y13 = load i32, i32* %y
 %x14 = load i32, i32* %x
 %tmp = call i32 %painter12(i32 %x14, i32 %y13)
 store i32 %tmp, i32* %canv11
 %x15 = load i32, i32* %x
 %x16 = load i32, i32* %x
 %tmp17 = add i32 %x16, 1
 store i32 %tmp17, i32* %x
 br label %while5

merge: ; preds = %while5
 %y21 = load i32, i32* %y
 %y22 = load i32, i32* %y
 %tmp23 = add i32 %y22, 1
 store i32 %tmp23, i32* %y
 br label %while

merge27: ; preds = %while
 %canv28 = load [960 x i32]*, [960 x i32]** %canv1
 ret [960 x i32]* %canv28
}

declare i32 @draw_default(...)

declare i32 @do_draw(i32*, i32, i32, i32, i32, ...)

declare i32 @printf(i8*, ...)

declare double @pow(double, double)

declare double @sin(double, ...)
 	

	 42	

declare double @cos(double, ...)

declare double @tan(double, ...)

declare double @log(double, ...)

declare double @rando()

declare double @randos(i32)

define i32 @main() {
entry:
 store i32 960, i32* @W
 store i32 840, i32* @H
 %H = load i32, i32* @H
 %W = load i32, i32* @W
 %tmp = call [960 x i32]* @graph([960 x i32]* getelementptr inbounds ([840 x [960 x i32]],
[840 x [960 x i32]]* @canvas, i32 0, i32 0), i32 %W, i32 %H, i32 (i32, i32)*
@____ReSeRvEd_AnOnYmOuS_fUnC__1)
 %cnvstmp = getelementptr inbounds [960 x i32], [960 x i32]* %tmp, i32 0, i32 0
 %H1 = load i32, i32* @H
 %W2 = load i32, i32* @W
 %do_draw = call i32 (i32*, i32, i32, i32, i32, ...) @do_draw(i32* %cnvstmp, i32 %W2, i32
%H1, i32 0, i32 0)
 ret i32 0
}

define i32 @____ReSeRvEd_AnOnYmOuS_fUnC__1(i32 %x, i32 %y) {
entry:
 %x1 = alloca i32
 store i32 %x, i32* %x1
 %y2 = alloca i32
 store i32 %y, i32* %y2
 %y3 = load i32, i32* %y2
 %x4 = load i32, i32* %x1
 %tmp = call i32 @red(i32 %x4, i32 %y3)
 %y5 = load i32, i32* %y2
 %x6 = load i32, i32* %x1
 %tmp7 = call i32 @green(i32 %x6, i32 %y5)
 %y8 = load i32, i32* %y2
 %x9 = load i32, i32* %x1
 %tmp10 = call i32 @blue(i32 %x9, i32 %y8)
 %tmp11 = mul i32 %tmp, 16777216
 %tmp12 = mul i32 %tmp7, 65536
 %tmp13 = mul i32 %tmp10, 256
 %tmp14 = add i32 %tmp11, %tmp12
 %tmp15 = add i32 %tmp14, %tmp13
 %tmp16 = add i32 %tmp15, 0
 ret i32 %tmp16
} 	

Figure	2:	mandelbrot_anon	LLVM	IR	code	

	
	
	
	

	 43	

/* jset.es */

pix canv[960][720];

int W = 960, H = 720;

function void graph(pix[960][] canvas, int w, int h, function pix (int, int) paint) {

 int x, y;

 for (y = 0; y < h; y++) {

 for (x = 0; x < w; x++) {

 canvas[x][y] = paint(x,y);

 }

 }

}

function float dim(int x) {

 float f = (x - H/2.0)/(H/2.0);

 return f;

}

function int red(int i, int j) {

 float x, y, X, Y, n;

 x = dim(i);

 y = dim(j);

 while (n<200 && (x*x + y*y)<1) {

 X = x*x;

 Y = y*y;

 x = X-Y + 0.36237;

 y = 2*x*y + 0.32;

 n++;

 }

 return log(2.718281, n) * 256;

}

function int green(int i, int j) {

 float x, y, X, Y, n;

 x = dim(i);

 y = dim(j);

 while (n<200 && (x*x + y*y)<1) {

 X=x;

 Y=y;

 x = X*X - Y*Y - 0.7;

 y = 2*X*Y+0.27015;

 n++;

 }

 return log(2.718281, n) * 96;

}

function int blue(int i, int j) {

 float x, y, X, Y, n;

 x = dim(i);

 y = dim(j);

 while (n<600 && (x*x + y*y)<1) {

 X=x;

 Y=y; 	

	 44	

 x = X*X - Y*Y + 0.36237;
 y = 2*X*Y+0.32;
 n++;
 }

 return log(2.718281, n)*128;
}

function pix paint_jset(int x, int y) {
 return { red(x,y), green(x,y), blue(x,y), 0 };
}

graph(canv, W, H, paint_jset);
draw(canv, 0, 0); 	

Figure	3:	jset	easel	code	

	
; ModuleID = 'easel'

@canv = global [720 x [960 x i32]] zeroinitializer
@W = global i32 0
@H = global i32 0

define i32 @paint_jset(i32 %x, i32 %y) {
entry:
 %x1 = alloca i32
 store i32 %x, i32* %x1

 %y2 = alloca i32
 store i32 %y, i32* %y2
 %y3 = load i32, i32* %y2
 %x4 = load i32, i32* %x1

 %tmp = call i32 @red(i32 %x4, i32 %y3)
 %y5 = load i32, i32* %y2
 %x6 = load i32, i32* %x1
 %tmp7 = call i32 @green(i32 %x6, i32 %y5)

 %y8 = load i32, i32* %y2
 %x9 = load i32, i32* %x1
 %tmp10 = call i32 @blue(i32 %x9, i32 %y8)
 %tmp11 = mul i32 %tmp, 16777216

 %tmp12 = mul i32 %tmp7, 65536
 %tmp13 = mul i32 %tmp10, 256
 %tmp14 = add i32 %tmp11, %tmp12
 %tmp15 = add i32 %tmp14, %tmp13

 %tmp16 = add i32 %tmp15, 0
 ret i32 %tmp16
}

define i32 @blue(i32 %i, i32 %j) {
entry:
 %i1 = alloca i32
 store i32 %i, i32* %i1

 %j2 = alloca i32
 store i32 %j, i32* %j2
 %x = alloca double
 store double 0.000000e+00, double* %x 	
	

	 45	

%y = alloca double
 store double 0.000000e+00, double* %y
 %X = alloca double
 store double 0.000000e+00, double* %X
 %Y = alloca double
 store double 0.000000e+00, double* %Y
 %n = alloca double
 store double 0.000000e+00, double* %n
 %i3 = load i32, i32* %i1
 %tmp = call double @dim(i32 %i3)
 store double %tmp, double* %x
 %j4 = load i32, i32* %j2
 %tmp5 = call double @dim(i32 %j4)
 store double %tmp5, double* %y
 br label %while

while: ; preds = %while_body, %entry
 %n24 = load double, double* %n
 %tmp25 = fcmp olt double %n24, 6.000000e+02
 %x26 = load double, double* %x
 %x27 = load double, double* %x
 %tmp28 = fmul double %x26, %x27
 %y29 = load double, double* %y
 %y30 = load double, double* %y
 %tmp31 = fmul double %y29, %y30
 %tmp32 = fadd double %tmp28, %tmp31
 %tmp33 = fcmp olt double %tmp32, 1.000000e+00
 %tmp34 = and i1 %tmp25, %tmp33
 br i1 %tmp34, label %while_body, label %merge

while_body: ; preds = %while
 %x6 = load double, double* %x
 store double %x6, double* %X
 %y7 = load double, double* %y
 store double %y7, double* %Y
 %X8 = load double, double* %X
 %X9 = load double, double* %X
 %tmp10 = fmul double %X8, %X9
 %Y11 = load double, double* %Y
 %Y12 = load double, double* %Y
 %tmp13 = fmul double %Y11, %Y12
 %tmp14 = fsub double %tmp10, %tmp13
 %tmp15 = fadd double %tmp14, 3.623700e-01
 store double %tmp15, double* %x
 %X16 = load double, double* %X
 %tmp17 = fmul double 2.000000e+00, %X16
 %Y18 = load double, double* %Y
 %tmp19 = fmul double %tmp17, %Y18
 %tmp20 = fadd double %tmp19, 3.200000e-01
 store double %tmp20, double* %y
 %n21 = load double, double* %n
 %n22 = load double, double* %n
 %tmp23 = fadd double %n22, 1.000000e+00
 store double %tmp23, double* %n
 br label %while

merge: ; preds = %while 	

	 46	

 %tmp_log = call double (double, ...) @log(double 2.718281e+00)
 %n35 = load double, double* %n
 %tmp_log36 = call double (double, ...) @log(double %n35)
 %log = fdiv double %tmp_log36, %tmp_log
 %tmp37 = fmul double %log, 1.280000e+02
 %tmp38 = fptosi double %tmp37 to i32
 ret i32 %tmp38
}

define i32 @green(i32 %i, i32 %j) {
entry:
 %i1 = alloca i32
 store i32 %i, i32* %i1
 %j2 = alloca i32
 store i32 %j, i32* %j2
 %x = alloca double
 store double 0.000000e+00, double* %x
 %y = alloca double
 store double 0.000000e+00, double* %y
 %X = alloca double
 store double 0.000000e+00, double* %X
 %Y = alloca double
 store double 0.000000e+00, double* %Y
 %n = alloca double
 store double 0.000000e+00, double* %n
 %i3 = load i32, i32* %i1
 %tmp = call double @dim(i32 %i3)
 store double %tmp, double* %x
 %j4 = load i32, i32* %j2
 %tmp5 = call double @dim(i32 %j4)
 store double %tmp5, double* %y
 br label %while

while: ; preds = %while_body, %entry
 %n24 = load double, double* %n
 %tmp25 = fcmp olt double %n24, 2.000000e+02
 %x26 = load double, double* %x
 %x27 = load double, double* %x
 %tmp28 = fmul double %x26, %x27
 %y29 = load double, double* %y
 %y30 = load double, double* %y
 %tmp31 = fmul double %y29, %y30
 %tmp32 = fadd double %tmp28, %tmp31
 %tmp33 = fcmp olt double %tmp32, 1.000000e+00
 %tmp34 = and i1 %tmp25, %tmp33
 br i1 %tmp34, label %while_body, label %merge

while_body: ; preds = %while
 %x6 = load double, double* %x
 store double %x6, double* %X
 %y7 = load double, double* %y
 store double %y7, double* %Y
 %X8 = load double, double* %X
 %X9 = load double, double* %X
 %tmp10 = fmul double %X8, %X9
 %Y11 = load double, double* %Y
 %Y12 = load double, double* %Y 	

	 47	

%tmp13 = fmul double %Y11, %Y12
 %tmp14 = fsub double %tmp10, %tmp13

 %tmp15 = fsub double %tmp14, 7.000000e-01
 store double %tmp15, double* %x
 %X16 = load double, double* %X
 %tmp17 = fmul double 2.000000e+00, %X16

 %Y18 = load double, double* %Y
 %tmp19 = fmul double %tmp17, %Y18
 %tmp20 = fadd double %tmp19, 2.701500e-01
 store double %tmp20, double* %y

 %n21 = load double, double* %n
 %n22 = load double, double* %n
 %tmp23 = fadd double %n22, 1.000000e+00
 store double %tmp23, double* %n

 br label %while

merge: ; preds = %while
 %tmp_log = call double (double, ...) @log(double 2.718281e+00)

 %n35 = load double, double* %n
 %tmp_log36 = call double (double, ...) @log(double %n35)
 %log = fdiv double %tmp_log36, %tmp_log
 %tmp37 = fmul double %log, 9.600000e+01

 %tmp38 = fptosi double %tmp37 to i32
 ret i32 %tmp38
}

define i32 @red(i32 %i, i32 %j) {
entry:
 %i1 = alloca i32
 store i32 %i, i32* %i1

 %j2 = alloca i32
 store i32 %j, i32* %j2
 %x = alloca double
 store double 0.000000e+00, double* %x

 %y = alloca double
 store double 0.000000e+00, double* %y
 %X = alloca double
 store double 0.000000e+00, double* %X

 %Y = alloca double
 store double 0.000000e+00, double* %Y
 %n = alloca double
 store double 0.000000e+00, double* %n

 %i3 = load i32, i32* %i1
 %tmp = call double @dim(i32 %i3)
 store double %tmp, double* %x
 %j4 = load i32, i32* %j2

 %tmp5 = call double @dim(i32 %j4)
 store double %tmp5, double* %y
 br label %while

while: ; preds = %while_body, %entry
 %n24 = load double, double* %n
 %tmp25 = fcmp olt double %n24, 2.000000e+02
 %x26 = load double, double* %x

 %x27 = load double, double* %x
 %tmp28 = fmul double %x26, %x27
 %y29 = load double, double* %y 	

	 48	

 %y30 = load double, double* %y
 %tmp31 = fmul double %y29, %y30

 %tmp32 = fadd double %tmp28, %tmp31
 %tmp33 = fcmp olt double %tmp32, 1.000000e+00
 %tmp34 = and i1 %tmp25, %tmp33
 br i1 %tmp34, label %while_body, label %merge

while_body: ; preds = %while
 %x6 = load double, double* %x
 %x7 = load double, double* %x

 %tmp8 = fmul double %x6, %x7
 store double %tmp8, double* %X
 %y9 = load double, double* %y
 %y10 = load double, double* %y

 %tmp11 = fmul double %y9, %y10
 store double %tmp11, double* %Y
 %X12 = load double, double* %X
 %Y13 = load double, double* %Y

 %tmp14 = fsub double %X12, %Y13
 %tmp15 = fadd double %tmp14, 3.623700e-01
 store double %tmp15, double* %x
 %x16 = load double, double* %x

 %tmp17 = fmul double 2.000000e+00, %x16
 %y18 = load double, double* %y
 %tmp19 = fmul double %tmp17, %y18
 %tmp20 = fadd double %tmp19, 3.200000e-01

 store double %tmp20, double* %y
 %n21 = load double, double* %n
 %n22 = load double, double* %n
 %tmp23 = fadd double %n22, 1.000000e+00

 store double %tmp23, double* %n
 br label %while

merge: ; preds = %while

 %tmp_log = call double (double, ...) @log(double 2.718281e+00)
 %n35 = load double, double* %n
 %tmp_log36 = call double (double, ...) @log(double %n35)
 %log = fdiv double %tmp_log36, %tmp_log

 %tmp37 = fmul double %log, 2.560000e+02
 %tmp38 = fptosi double %tmp37 to i32
 ret i32 %tmp38
}

define double @dim(i32 %x) {
entry:
 %x1 = alloca i32

 store i32 %x, i32* %x1
 %f = alloca double
 %x2 = load i32, i32* %x1
 %H = load i32, i32* @H

 %tmp = sitofp i32 %H to double
 %tmp3 = fdiv double %tmp, 2.000000e+00
 %tmp4 = sitofp i32 %x2 to double
 %tmp5 = fsub double %tmp4, %tmp3

 %H6 = load i32, i32* @H
 %tmp7 = sitofp i32 %H6 to double
 %tmp8 = fdiv double %tmp7, 2.000000e+00 	

	 49	

 %tmp9 = fdiv double %tmp5, %tmp8
 store double %tmp9, double* %f

 %f10 = load double, double* %f
 ret double %f10
}

define void @graph([960 x i32]* %canvas, i32 %w, i32 %h, i32 (i32, i32)* %paint) {
entry:
 %canvas1 = alloca [960 x i32]*
 store [960 x i32]* %canvas, [960 x i32]** %canvas1

 %w2 = alloca i32
 store i32 %w, i32* %w2
 %h3 = alloca i32
 store i32 %h, i32* %h3

 %paint4 = alloca i32 (i32, i32)*
 store i32 (i32, i32)* %paint, i32 (i32, i32)** %paint4
 %x = alloca i32
 store i32 0, i32* %x

 %y = alloca i32
 store i32 0, i32* %y
 store i32 0, i32* %y
 br label %while

while: ; preds = %merge, %entry
 %y24 = load i32, i32* %y
 %h25 = load i32, i32* %h3

 %tmp26 = icmp slt i32 %y24, %h25
 br i1 %tmp26, label %while_body, label %merge27

while_body: ; preds = %while

 store i32 0, i32* %x
 br label %while5

while5: ; preds = %while_body6, %while_body

 %x18 = load i32, i32* %x
 %w19 = load i32, i32* %w2
 %tmp20 = icmp slt i32 %x18, %w19
 br i1 %tmp20, label %while_body6, label %merge

while_body6: ; preds = %while5
 %canvas7 = load [960 x i32]*, [960 x i32]** %canvas1
 %y8 = load i32, i32* %y

 %canvas9 = getelementptr inbounds [960 x i32], [960 x i32]* %canvas7, i32 %y8
 %x10 = load i32, i32* %x
 %canvas11 = getelementptr inbounds [960 x i32], [960 x i32]* %canvas9, i32 0, i32 %x10
 %paint12 = load i32 (i32, i32)*, i32 (i32, i32)** %paint4

 %y13 = load i32, i32* %y
 %x14 = load i32, i32* %x
 %tmp = call i32 %paint12(i32 %x14, i32 %y13)
 store i32 %tmp, i32* %canvas11

 %x15 = load i32, i32* %x
 %x16 = load i32, i32* %x
 %tmp17 = add i32 %x16, 1
 store i32 %tmp17, i32* %x

 br label %while5

merge: ; preds = %while5 	

	 50	

 %y21 = load i32, i32* %y
 %y22 = load i32, i32* %y
 %tmp23 = add i32 %y22, 1
 store i32 %tmp23, i32* %y
 br label %while

merge27: ; preds = %while
 ret void
}

declare i32 @draw_default(...)

declare i32 @do_draw(i32*, i32, i32, i32, i32, ...)

declare i32 @printf(i8*, ...)

declare double @pow(double, double)

declare double @sin(double, ...)

declare double @cos(double, ...)

declare double @tan(double, ...)

declare double @log(double, ...)

declare double @rando()

declare double @randos(i32)

define i32 @main() {
entry:
 store i32 960, i32* @W
 store i32 720, i32* @H
 %H = load i32, i32* @H
 %W = load i32, i32* @W
 call void @graph([960 x i32]* getelementptr inbounds ([720 x [960 x i32]], [720 x [960 x
i32]]* @canv, i32 0, i32 0), i32 %W, i32 %H, i32 (i32, i32)* @paint_jset)
 %do_draw = call i32 (i32*, i32, i32, i32, i32, ...) @do_draw(i32* getelementptr inbounds
([720 x [960 x i32]], [720 x [960 x i32]]* @canv, i32 0, i32 0, i32 0), i32 960, i32 720, i32
0, i32 0)
 ret i32 0
} 	

Figure	4:	jset	LLVM	IR	code	

	
6.2 Test Suite

We created our test suite to help both with ensuring that our scanner and parser were
functioning correctly and also to check that we were getting the expected output once we began
generating LLVM IR code. The test cases are stored in the folder called “tests”. The test cases
include the easel programs as well as their respective AST outputs and either the compiler normal
output or the failure outputs, depending on the type of test. Most of our tests cases aim to cover
different aspects of the easel language, including everything relating to statements and functions
covered in our language reference manual.

	 51	

Test cases were written when new features were added to the language. At first the AST
test cases was created when the scanner and parser were created to ensure that there was no
ambiguity in the grammar. Then fail cases for semantic testing were created to be used to confirm
that our semantic checker was functioning as planned. As we wrote codegen, the test cases for the
expected output of programs were added to test that we were correctly compiling down to LLVM
IR. For the purposes of testing output, we created a few print statements; however, easily normally
would not allow a user to print to the screen because the program is meant for drawing images.
We additionally created test programs to ensure that drawing images was working as expected.

We performed the following types of testing:
1. Literals (declaration, comparison, assignment, type casting)
2. Functions (nested, user-defined, built-in, recursive calls, functions passed as arguments,
anonymous)
3. Scope (global, local)
4. Statements (if, while, for, return, nested statements)
5. Array (assignment, arrays are function arguments)
6. Pix (declaration, operations, matrix operations)
7. Draw

All files in our test suite are listed in the Appendix. We included tests that were expected to pass,
as well as tests that were expected to fail. We also created tests that draw easel graphs (also those
were checked by visual confirmation).

6.3 Test Automation

In order to easily run test cases in our language, we created a shell script (autotest.sh) that
will automatically run every test in our tests/ directory. This test script will diff the outputs of the
tests with the expected outputs that we created. If the test passes, it will print “test-xxx…OK”,
otherwise it will return “fail-xxx.es...FAILED” and then print out the failure information such as
“fail-xx.err differs”. If the test does not pass, the respective diff files and expected test output for
the failed tests will be generated and remain in the easel/ repository for debugging. And we can
also use autotest.sh -k argument to keep the intermediate generated files (such as expected failure
.err files, expected normal output .out files) in the repository for finding and resolving bugs. To
test our scanner and parser, we used the –a option to return the AST output.

	 52	

6.4 Testing Roles
The majority of the test cases were written by Sophie. She looked both through the LRM

and at other code that was being pushed (and that she wrote herself) and made tests based on those.
Oswin, Danielle, and Sophie contributed to the code in the demos/ directory that is used to test that
the draw function works. All team members contributed a few test cases to both the test and fail
cases. The whole team also looked over the test suite to ensure that all cases were being covered
and we recommended cases that should be written if they did not yet exist.

7. Lessons Learned
7.1 Danielle Crosswell

This semester is easily the longest time I have spent working on a project for a class. What
made this project (almost) completely stress-free was my team. If I learned one thing from this
semester of group projects in almost all of my classes, it is that you need a good team. I learned
from this assignment that there are in fact people at this school that I can depend on to complete a
project by deadlines and pick up my slack if I’m having a rough week; however, with a great team
comes great responsibility.

It is really easy to get swamped with other work and take a week off from working on this
project. Your language is constantly changing and evolving, whether you’re moving with it or not.
I learned that if you stop keeping up with the new commits and functions being added to your
language, you will get lost. It’s really easy to fall behind in something like this and the most
important thing I learned is to at least keep up with the code, even if you don’t have time to
contribute anything meaningful.

Another problem I ran into was not completely understanding OCaml in the beginning. We
were fortunate because the base of our language is similar to MicroC. We were able to get started
pretty easily and had a nice code repository to reference when we got stuck; however, our code
very quickly diverged from MicroC and I got stuck trying to force MicroC-esque code to work on
easel. Rather than actually understanding the code and easel itself, I wasted a lot of time in the
beginning trying to replicate MicroC. From this experience, I learned to understand first and code
second. This project could be really challenging and frustrating at times but being able to finally
create the image we had set as our goal (the mandelbrot) was incredibly rewarding.

7.2 Tyrus Cukavac
 As the language guru, I think the most important lesson I learned was not to get too wrapped
up in details while defining the language. Obviously, a well-defined language requires specific and
unambiguous details. However, in my effort to do too much too quickly while creating the
language reference manual, I found myself getting stuck in the weeds and into paradoxical thought
loops that made the creation of the LRM incredibly overwrought and confusing.
 In hindsight, I wish I had stuck with principles of our language while creating the initial
draft of the LRM (almost beginning with a language tutorial and then deriving the grammar from
there) rather than trying to force a grammar and attempting (poorly) to create a readable document.
Lesson learned: don’t get stuck in the weeds and abide by your principles and goals as much as
possible!
 On the subject of principles and goals, I think I started with a number of irreconcilable and
unnecessary objectives rather than looking more holistically at the function that easel could serve
and how best it could achieve this. There was too much hand-wringing on my part early on along

	 53	

the lines of “Well, it needs to be pseudo-functional!” and “We need to have tuples!” and “It needs
to divide by zero!” (Kidding on the last sentence, although during implementation it definitely
often felt like I was asking for impossible things!) Instead, a more attainable goal might have been
“a simple language that uses functions to make pictures”. With such a clean objective, useful
features could be derived in a cleaner, less harried, and more organic manner. With the earlier
approach, at times it felt like I was designing the Homer Simpson car.
 Another important lesson - good teammates makes for a good project. I feel very fortunate
to have worked with such a supportive and talented group of people that made the creation of our
language possible.

7.3 Oswin Chou
 Quite an enjoyable pain! I mean, OCaml- the functional programming language. Do not
expect that you can pick up this language as quick as you pick up others. Coding in a functional
language is completely a different experience from what I do in other prevailing languages like
Python, JavaScript, C, etc. Sometimes it can get people stuck for hours just for a few lines of code.
So just like what ancient warriors do for preparing for battles, sharpen your weapon before it starts!
I wish I had read through the code of MicroC earlier so I could come up with solutions quicker
and make better choices when writing the code. However, everything costs. Doing additional
reading work does the same- it costs you time. Hence, for me I think it would be better to have
only this one heavy project-implementing course, so I can devote myself to this fulfilling project.
But it is worth doing. I might have no other chances in my life to code in a functional language so
seriously. And it is always interesting to learn and play with something different, so you can have
fun and have a broader horizon.
 And the other thing about what everyone suggests, making a good choice on teammates, I
think what you need is luck- you cannot know how good they are after you really work with them.
I am fortunate to have enough luck to team up with these amazing people- so talented, resourceful,
and energetic. Everyone does their job so well and always helps others without hesitance. That is
what you really need to do a project well!

7.4 Sophie Chen
 As the tester, the first thing I learned from this project is that the test suite needs to be built
as soon as possible. This great suggestion is made by Rachel on the first day of our meetings. And
working through your LRM is a good idea to create the test suite. Although some of the test cases
may not pass before the complete implementation of the language, it could be a guide for you to
see how much work is left to be done.

During the implementation of the language, it is really easy to replicate others’ codes that
seems to but actually does not fit in your language, so please don’t do that. You should first refer
to the commits in the repo to catch up with the changes of your language, and communicate timely
with your teammates. Otherwise it will make unnecessary conflicts in the codes. Thanks to the
constant communications between our team, this kind of situation happens rarely.
 And in the semester-long project, the most important thing I have learned is teamwork. I
am very lucky to work with such well-rounded and talented teammates. Everyone in our team is
willing to find out solutions to the unsolved problems and never hesitate to give a helping hand to
someone who was stuck in any kind of problem. And we also met every week and had
“hackathons” together, when my teammates always turned the painful coding process of OCaml

	 54	

into efficient learning time along with many laughs. Coding with my teammates is definitely one
of the most enjoyable times in Columbia!

7.5 Advice for Future Teams

Our first piece of advice for future teams is to choose a project that you are all excited
about. Think more about the type of work you would like to accomplish rather than what you think
you are able to accomplish. We also highly recommend that you use git - not only is it required to
submit your project log, but it also keeps everything extremely organized and allows you to revert
to a previous version when you mess something up horribly. When using git, have one person
(your system architect) in charge of making your repository and managing pull requests. That way
one person has the final say on the code being merged into your project.

Our next piece of advice is to create small goals for yourself. Once we began code
generation, we started by implementing the features needed for Hello World to work. We then
began working towards making the mandelbrot run. Once those two goals were met, our final step
was to complete our language. However, something important to note here is that even if you think
your code is almost done, you’re probably wrong. Just because you hit a milestone doesn’t mean
that you can stop working. This project will constantly have work to be done until you submit your
final code directory. Along this line, try to work chronologically through your code; don’t put off
other programs, such as your semantic checker, just because you need to start working on codegen.
Try to stay on top of your work and get one part of the pipeline done before moving onto the next.
Finally, work together and be communicative. Clearly set up who in your team is expected to
accomplish certain goals and let your team know when you are working through those
assignments. You don’t want to run into the problem where two people are implementing the same
piece of code simultaneously. More useful than being communicative though is finding a few hours
during the weekend to all sit together and code. It is much easier to work through code when you
have resources that you can get help from when you get stuck on a problem, rather than sitting
alone in your room for five hours trying to figure it out yourself (and failing).

8. Appendix
8.1 scanner.mll
(* scanner.mll *)
(* By: Oswin, Tyrus *)
(* Ocamllex scanner for easel *)

{ open Parser }

let digit = ['0'-'9']
let hexdigit = ['0'-'9' 'a'-'f' 'A'-'F']
let exp = 'e' ['+' '-']? digit+

rule token = parse
 [' ' '\t' '\r' '\n'] { token lexbuf } (* Whitespace *)
| "/*" { comment 1 lexbuf } (* Comments *)
| '(' { LPAREN }
| ')' { RPAREN }
| '[' { LBRCK }
| ']' { RBRCK }
| '{' { LBRACE }
| '}' { RBRACE }

	 55	

| ';' { SEMI }
| ',' { COMMA }
| '+' { PLUS }
| '-' { MINUS }
| '*' { TIMES }
| '/' { DIVIDE }
| '%' { MOD }
| '^' { POW }
| '.' { DOT }
| "++" { INC }
| "--" { DEC }
| '=' { ASSIGN }
| "==" { EQ }
| "!=" { NEQ }
| '<' { LT }
| "<=" { LEQ }
| ">" { GT }
| ">=" { GEQ }
| "&&" { AND }
| "||" { OR }
| "!" { NOT }
| "if" { IF }
| "else" { ELSE }
| "for" { FOR }
| "while" { WHILE }
| "return" { RETURN }
| "int" { INT }
| "float" { FLOAT }
| "bool" { BOOL }
| "void" { VOID }
| "pix" { PIX }
| "function" { FUNC }
| "true" | "false" as lxm { BOOLLIT(bool_of_string lxm) }
(* No harm to support 0xFF format *)
| '0'('x'|'X') hexdigit+ | digit+ as lxm { INTLIT(int_of_string lxm) }
| '#' hexdigit+ as lxm {
 let lit = "0x" ^ String.sub lxm 1 (String.length lxm - 1) in
 INTLIT(int_of_string lit)
 }
(* Float literal *)
| (digit* '.' digit+ | digit+ '.') exp? | digit+ exp as lxm
 { FLOATLIT(float_of_string lxm) }
(* Identifier *)
| ['a'-'z' 'A'-'Z' '_']['a'-'z' 'A'-'Z' '0'-'9' '_']* as lxm { ID(lxm) }
| eof { EOF }
| _ as char { raise (Failure("illegal character " ^ Char.escaped char)) }

and comment cnt = parse
 "/*" { comment (cnt + 1) lexbuf }
| "*/" { if cnt = 1 then token lexbuf else comment (cnt - 1) lexbuf }
| _ { comment cnt lexbuf }

	 56	

8.2 parser.mly
/* parser.mly */
/* By: Oswin, Tyrus, Danielle */
/* Ocamlyacc parser for easel */

%{
open Ast
%}

%token FUNC
%token SEMI LPAREN RPAREN LBRCK RBRCK LBRACE RBRACE COMMA
%token PLUS MINUS TIMES DIVIDE MOD POW ASSIGN NOT
%token INC DEC DOT
%token EQ NEQ LT LEQ GT GEQ AND OR
%token RETURN IF ELSE FOR WHILE INT FLOAT BOOL VOID PIX
%token <int> INTLIT
%token <float> FLOATLIT
%token <bool> BOOLLIT
%token <string> ID
%token EOF

%nonassoc NOELSE
%nonassoc ELSE

%start program
%type <Ast.program> program

%%

program:
 decls EOF { $1 }

decls:
 /* nothing */ { [], [] }
 | decls fdecl { let (fds, sts) = $1 in ($2 :: fds), sts }
 | decls stmt { let (fds, sts) = $1 in fds, ($2 :: sts) }

fdecl:
 FUNC typ ID LPAREN formals RPAREN LBRACE stmt_list RBRACE
 { { typ = $2;
 fname = $3;
 formals = List.rev $5;
 body = List.rev $8;
 checked = false } }
 | FUNC typ ID LPAREN RPAREN LBRACE stmt_list RBRACE
 { { typ = $2;
 fname = $3;
 formals = [];
 body = List.rev $7;
 checked = false } }
 | FUNC typ ID LPAREN formals RPAREN LBRACE RBRACE
 { { typ = $2;
 fname = $3;
 formals = List.rev $5;
 body = [];
 checked = false } }
 | FUNC typ ID LPAREN RPAREN LBRACE RBRACE

	 57	

 { { typ = $2;

 fname = $3;

 formals = [];

 body = [];

 checked = false } }

formals:

 typ dectr { [($1, $2)] }

 | formals COMMA typ dectr { ($3, $4) :: $1 }

aformals:

 typ { [$1] }

 | aformals COMMA typ { $3 :: $1 }

typ:

 prim_typ { $1 }

 | afunc_typ { $1 }

 | typ LBRCK RBRCK { ArrRef($1, 0) }

 | typ LBRCK INTLIT RBRCK { ArrRef($1, $3) }

prim_typ:

 INT { Int }

 | FLOAT { Float }

 | BOOL { Bool }

 | VOID { Void }

 | PIX { Pix }

afunc_typ:

 FUNC typ LPAREN aformals RPAREN

 { Func($2, List.rev $4) }

 | FUNC typ LPAREN RPAREN

 { Func($2, []) }

init_dectr_list:

 init_dectr { [$1] }

 | init_dectr_list COMMA init_dectr { $3 :: $1 }

init_dectr:

 dectr { InitDectr($1, Noexpr) }

 | dectr ASSIGN expr { InitDectr($1, $3) }

dectr:

 ID { DecId($1) }

 | dectr LBRCK INTLIT RBRCK { DecArr($1, $3) }

stmt_list:

 stmt { [$1] }

 | stmt_list stmt { $2 :: $1 }

stmt:

 expr SEMI { Expr $1 }

 | typ init_dectr_list SEMI { Vdef($1, $2) }

 | RETURN SEMI { Return Noexpr }

 | RETURN expr SEMI { Return $2 }

 | LBRACE stmt_list RBRACE { Block(List.rev $2) }

 | LBRACE RBRACE { Block([]) }

 | IF LPAREN expr RPAREN stmt %prec NOELSE { If($3, $5, Block([])) }

	 58	

 | IF LPAREN expr RPAREN stmt ELSE stmt { If($3, $5, $7) }
 | FOR LPAREN expr_opt SEMI expr SEMI expr_opt RPAREN stmt
 { For($3, $5, $7, $9) }
 | WHILE LPAREN expr RPAREN stmt { While($3, $5) }

anonfunc:
 FUNC typ LPAREN formals RPAREN LBRACE stmt_list RBRACE
 { AnonFunc({ typ = $2; fname = ""; formals = List.rev $4; body = List.rev $7; checked =
false }) }
 | FUNC typ LPAREN RPAREN LBRACE stmt_list RBRACE
 { AnonFunc({ typ = $2; fname = ""; formals = []; body = List.rev $6; checked = false }) }
 | FUNC typ LPAREN formals RPAREN LBRACE RBRACE
 { AnonFunc({ typ = $2; fname = ""; formals = List.rev $4; body = []; checked = false }) }
 | FUNC typ LPAREN RPAREN LBRACE RBRACE
 { AnonFunc({ typ = $2; fname = ""; formals = []; body = []; checked = false }) }

expr_opt:
 /* nothing */ { Noexpr }
 | expr { $1 }

expr:
 assign_expr { $1 }

assign_expr:
 logic_or_expr { $1 }
 | anonfunc { $1 }
 | LBRACE expr COMMA expr COMMA expr COMMA expr RBRACE { PixLit($2, $4, $6, $8) }
 | postfix_expr ASSIGN assign_expr { Assign($1, $3) }

logic_or_expr:
 logic_and_expr { $1 }
 | logic_or_expr OR logic_and_expr { Binop($1, Or, $3) }

logic_and_expr:
 eq_expr { $1 }
 | logic_and_expr AND eq_expr { Binop($1, And, $3) }

eq_expr:
 rel_expr { $1 }
 | eq_expr EQ rel_expr { Binop($1, Equal, $3) }
 | eq_expr NEQ rel_expr { Binop($1, Neq, $3) }

rel_expr:
 add_expr { $1 }
 | rel_expr LT add_expr { Binop($1, Less, $3) }
 | rel_expr GT add_expr { Binop($1, Greater, $3) }
 | rel_expr LEQ add_expr { Binop($1, Leq, $3) }
 | rel_expr GEQ add_expr { Binop($1, Geq, $3) }

add_expr:
 mult_expr { $1 }
 | add_expr PLUS mult_expr { Binop($1, Add, $3) }
 | add_expr MINUS mult_expr { Binop($1, Sub, $3) }

mult_expr:
 exp_expr { $1 }
 | mult_expr TIMES exp_expr { Binop($1, Mult, $3) }

	 59	

 | mult_expr DIVIDE exp_expr { Binop($1, Div, $3) }
 | mult_expr MOD exp_expr { Binop($1, Mod, $3) }

exp_expr:
 unary_expr { $1 }
 | exp_expr POW unary_expr { Binop($1, Pow, $3) }

unary_expr:
 postfix_expr { $1 }
 | PLUS unary_expr { $2 }
 | MINUS unary_expr { Unop(Neg, $2) }
 | NOT unary_expr { Unop(Not, $2) }

postfix_expr:
 base_expr { $1 }
 | postfix_expr LBRCK expr RBRCK { EleAt($1, $3) }
 | postfix_expr LPAREN actuals_list RPAREN { Call($1, List.rev $3) }
 | postfix_expr LPAREN RPAREN { Call($1, []) }
 | postfix_expr DOT ID { PropAcc($1, $3) }
 | postfix_expr INC { Unop(Inc, $1) }
 | postfix_expr DEC { Unop(Dec, $1) }

base_expr:
 INTLIT { IntLit($1) }
 | FLOATLIT { FloatLit($1) }
 | BOOLLIT { BoolLit($1) }
 | ID { Id($1) }
 | LPAREN expr RPAREN { $2 }

actuals_list:
 expr { [$1] }
 | actuals_list COMMA expr { $3 :: $1 }

8.3 ast.ml
(* ast.ml *)
(* By: Oswin, Tyrus, Danielle and Sophie *)
(* Abstract Syntax Tree and functions for printing it *)

type op = Add | Sub | Mult | Div | Mod | Pow | Equal | Neq | Less | Leq | Greater | Geq |
 And | Or

and uop = Neg | Not | Inc | Dec

and typ = Int | Float | Bool | Void | Pix | Func of typ * typ list | ArrRef of typ * int

and dectr =
 DecId of string
 | DecArr of dectr * int (* declarator * array length *)

and bind = typ * dectr
	 	
	
	
	

	 60	

and expr =
 IntLit of int

 | FloatLit of float
 | BoolLit of bool
 | PixLit of expr * expr * expr * expr
 | Id of string

 | Binop of expr * op * expr
 | Unop of uop * expr
 | Assign of expr * expr
 | Call of expr * expr list

 | EleAt of expr * expr
 | PropAcc of expr * string (* Access property "string" of "expr" *)
 | AnonFunc of func_decl
 | Noexpr

and init_dectr = InitDectr of dectr * expr (* dectr * Initializer *)

and stmt =

 Block of stmt list
 | Expr of expr
 | Vdef of typ * init_dectr list
 | Return of expr

 | If of expr * stmt * stmt
 | For of expr * expr * expr * stmt
 | While of expr * stmt

and func_decl = {
 typ : typ;
 fname : string;
 formals : bind list;
 body : stmt list;
 checked: bool;
 }

and program = func_decl list * stmt list

(* Pretty-printing functions *)

let rec string_of_op = function
 Add -> "+"
 | Sub -> "-"
 | Mult -> "*"

 | Div -> "/"
 | Mod -> "%"
 | Pow -> "^"
 | Equal -> "=="

 | Neq -> "!="
 | Less -> "<"
 | Leq -> "<="
 | Greater -> ">"

 | Geq -> ">="
 | And -> "&&"
 | Or -> "||"

and string_of_typ = function
 Int -> "int"
 | Float -> "float" 	

	 61	

 | Bool -> "bool"
 | Void -> "void"
 | Pix -> "pix"
 | Func(t, tl) ->
 "function " ^ string_of_typ t ^ " (" ^ String.concat ", " (List.map string_of_typ tl) ^
")"
 | ArrRef(t, 0) -> string_of_typ t ^ "[]"
 | ArrRef(t, l) -> string_of_typ t ^ "[" ^ string_of_int l ^ "]"

and string_of_dectr = function
 DecId(s) -> s
 | DecArr(d, 0) -> string_of_dectr d ^ "[]"
 | DecArr(d, l) -> string_of_dectr d ^ "[" ^ string_of_int l ^ "]"

and string_of_bind (t, d) =
 string_of_typ t ^ " " ^ string_of_dectr d

and string_of_uop = function
 Neg -> "-"
 | Not -> "!"
 | Inc -> "++"
 | Dec -> "--"

and string_of_expr = function
 IntLit(l) -> string_of_int l
 | FloatLit(f) -> string_of_float f
 | BoolLit(b) -> string_of_bool b
 (*| ArrLit(el) -> "[" ^ String.concat ", " (List.map string_of_expr el) ^ "]"*)
 | PixLit(e1, e2, e3, e4) -> "{" ^ string_of_expr e1 ^ ", " ^ string_of_expr e2 ^ ", " ^
string_of_expr e3 ^ ", " ^ string_of_expr e4 ^ "}"
 | Id(s) -> s
 | Binop(e1, o, e2) ->
 string_of_expr e1 ^ " " ^ string_of_op o ^ " " ^ string_of_expr e2
 | Unop(o, e) ->
 match o with
 Neg -> "-" ^ string_of_expr e
 | Not -> "!" ^ string_of_expr e
 | Inc -> string_of_expr e ^ "++"
 | Dec -> string_of_expr e ^ "--";
 ;
 | Assign(v, e) -> string_of_expr v ^ " = " ^ string_of_expr e
 | Call(f, el) ->
 string_of_expr f ^ "(" ^ String.concat ", " (List.map string_of_expr el) ^ ")"
 | EleAt(arr, idx) -> string_of_expr arr ^ "[" ^ string_of_expr idx ^ "]"
 | PropAcc(e, id) -> string_of_expr e ^ "." ^ id
 | AnonFunc(func) -> string_of_fdecl func
 | Noexpr -> ""

and string_of_initdectr = function
 InitDectr(s, Noexpr) -> string_of_dectr s
 | InitDectr(s, e) -> string_of_dectr s ^ " = " ^ string_of_expr e

and string_of_stmt = function
 Block(stmts) ->
 "{\n" ^ String.concat "" (List.map string_of_stmt stmts) ^ "}\n"
 | Expr(expr) -> string_of_expr expr ^ ";\n";
 | Vdef(t, dl) -> string_of_typ t ^ " " ^ 	

	 62	

 String.concat ", " (List.map string_of_initdectr (List.rev dl)) ^ ";\n";
 | Return(expr) -> "return " ^ string_of_expr expr ^ ";\n";
 | If(e, s, Block([])) -> "if (" ^ string_of_expr e ^ ")\n" ^ string_of_stmt s

 | If(e, s1, s2) -> "if (" ^ string_of_expr e ^ ")\n" ^

 string_of_stmt s1 ^ "else\n" ^ string_of_stmt s2

 | For(e1, e2, e3, s) ->

 "for (" ^ string_of_expr e1 ^ " ; " ^ string_of_expr e2 ^ " ; " ^

 string_of_expr e3 ^ ") " ^ string_of_stmt s

 | While(e, s) -> "while (" ^ string_of_expr e ^ ") " ^ string_of_stmt s

and string_of_fdecl fdecl =

 "function " ^ string_of_typ fdecl.typ ^ " " ^

 fdecl.fname ^ "(" ^ String.concat ", " (List.map string_of_bind fdecl.formals) ^

 ")\n{\n" ^

 String.concat "" (List.map string_of_stmt fdecl.body) ^

 "}"

and string_of_funcs = function

 [] -> ""

 | funcs -> String.concat "\n\n" (List.map string_of_fdecl (List.rev funcs)) ^ "\n\n"

and string_of_program (funcs, stmts) =

 string_of_funcs funcs ^

 String.concat "" (List.map string_of_stmt (List.rev stmts)) 	
	
8.4 semant.ml
(* semant.ml *)
(* By: Oswin, Tyrus, Sophie *)

(* Semantic checking for easel compiler *)

open Ast

module StringMap = Map.Make(String)

(* The semantic checker will return void if successful and will throw an exception otherwise
*)

let globals = Hashtbl.create 8;;

let check (functions, statements) =

 (* check for duplicates names *)
 let report_dup exceptf list =
 let rec helper = function

 n1 :: n2 :: _ when n1 = n2 -> raise (Failure (exceptf n1))
 | _ :: t -> helper t
 | [] -> ()
 in helper (List.sort compare list)

 in

 (* check for void type *)
 let check_void exceptf = function

 (Void, n) -> raise (Failure (exceptf n))
 | _ -> ()
 in
 	

	 63	

 (* check that rvalue type can be assigned to lvalue type *)

 let check_assign lvalt rvalt err = match (lvalt, rvalt) with

 (Pix, Int) | (Int, Pix) | (ArrRef(Pix, _), ArrRef(Int, _)) |

 (ArrRef(ArrRef(Pix, _), _), ArrRef(ArrRef(Int, _), _)) -> lvalt

 | (ArrRef(ArrRef(lv,_),_), ArrRef(ArrRef(rv,_),_)) -> if lv = rv then lvalt else raise

err

 | (lv, rv) -> if lv = rv then lvalt else raise err

 in

 if List.mem "print" (List.map (fun fd -> fd.fname) functions)

 then raise (Failure ("function print may not be defined")) else ();

 (* Check and build function table *)

 let functions =

 { typ = Void; fname = "draw_default"; formals = [];
 body = []; checked = true }::
 { typ = Void; fname = "do_draw"; formals = [(Pix, DecArr(DecArr(DecId("canvas"), 0),
0));
 (Int, DecId("w")); (Int, DecId("h")); (Int, DecId("x")); (Int, DecId("y"))];
 body = []; checked = true }::
 { typ = Void; fname = "draw"; formals = [(Pix, DecArr(DecArr(DecId("canvas"), 0), 0));
(Int, DecId("x")); (Int, DecId("y"))];
 body = []; checked = true }::
 { typ = Void; fname = "draw_size"; formals = [(Pix, DecArr(DecArr(DecId("canvas"), 0),
0));
 (Int, DecId("w")); (Int, DecId("h")); (Int, DecId("x")); (Int, DecId("y"))];
 body = []; checked = true }::
 { typ = Void; fname = "print"; formals = [(Int, DecId("x"))];
 body = []; checked = true }::
 { typ = Void; fname = "printfl"; formals = [(Float, DecId("x"))];
 body = []; checked = true }::
 { typ = Void; fname = "printp"; formals = [(Pix, DecId("x"))];
 body = []; checked = true }::
 { typ = Void; fname = "printb"; formals = [(Bool, DecId("x"))];
 body = []; checked = true }::

 { typ = Float; fname = "pow"; formals = [(Float, DecId("x")); (Float, DecId("y"))];
 body = []; checked = true }::
 { typ = Float; fname = "tan"; formals = [(Float, DecId("x"))];
 body = []; checked = true }::
 { typ = Float; fname = "sin"; formals = [(Float, DecId("x"))];
 body = []; checked = true }::
 { typ = Float; fname = "cos"; formals = [(Float, DecId("x"))];
 body = []; checked = true }::
 { typ = Float; fname = "log"; formals= [(Float, DecId("base"));
(Float, DecId("value"))];
 body = []; checked = true }::
 { typ = Float; fname = "rando"; formals = [];
 body = []; checked = true }::
 { typ = Float; fname = "randos"; formals = [(Int, DecId("seed"))];
 body = []; checked = true }:: functions
 in

 let rec typ_of_bind = function

 (ArrRef(ArrRef(t, _),_),DecId(_)) -> ArrRef(ArrRef(t, 0),0)

 | (ArrRef(t, _),DecId(_)) -> ArrRef(t, 0)

 | (t, DecArr(d, _)) -> typ_of_bind (ArrRef(t, 0), d) 	

	 64	

 | (t, DecId(_)) -> t
 in

 let func_sign fd =
 fd.fname
 in

 report_dup (fun n -> "duplicate function " ^ n)
 (List.map (fun fd -> func_sign fd) functions);

 let func_decls = Hashtbl.create 8 in
 let _ = List.iter (fun fd -> let formal_types =
 List.map (fun formals -> fst formals) fd.formals in
 ignore(Hashtbl.add globals fd.fname (Func(fd.typ, formal_types)));
 Hashtbl.add func_decls (func_sign fd) fd) functions
 in

 let func_checked fd =

 Hashtbl.remove func_decls (func_sign fd);
 Hashtbl.add func_decls (func_sign fd) { fd with checked = true }
 in

 let func_decl func_locals s = try StringMap.find s func_locals
 with Not_found ->
 try Hashtbl.find func_decls s
 with Not_found -> raise (Failure ("unrecognized function " ^ s))

 in

 let type_of_identifier locals id =
 try StringMap.find id locals

 with Not_found ->
 try Hashtbl.find globals id
 with Not_found -> raise (Failure ("undeclared identifier " ^ id))
 in

 let rec id_of_dectr = function
 DecArr(DecArr(DecArr(_, _),_),_) -> raise(Failure("Matrices of greater than 2
dimensions are not supported in easel."))

 | DecArr(d, _) -> id_of_dectr d
 | DecId(id) -> id
 in

 (* Return the type of an expression or throw an exception *)
 let rec expr locals func_locals = function
 IntLit _ -> Int
 | FloatLit _ -> Float

 | BoolLit _ -> Bool
 | PixLit(er, eg, eb, ea)-> (*match el with [e1; e2; e3] -> *)
 let tr = expr locals func_locals er and tg = expr locals func_locals eg and
 tb = expr locals func_locals eb and ta = expr locals func_locals ea in

 if (tr = Int && tg = Int && tb = Int && ta = Int) then Pix
 else raise(Failure ("illegal pix value [" ^ string_of_expr er ^ string_of_expr eg ^
string_of_expr eb ^ string_of_expr ea ^ "]"))
 | Id s -> type_of_identifier locals s

 | Binop(e1, op, e2) as e -> let t1 = expr locals func_locals e1 and t2 = expr locals
func_locals e2 in
 let t = (match (t1,t2) with 	

	 65	

 (Int,Int) | (Int, Pix) | (Pix, Int) -> Int

 | (Pix, Pix) -> Pix

 | (Float,Float) | (Int,Float) | (Float,Int) | (Float, Pix) | (Pix, Float) ->

Float

 | (Bool, Bool) -> Bool

 | (_,_) -> Void) in

 (match op with

 Add | Sub | Mult | Div | Mod -> (match t with

 Int -> Int

 | Pix -> Pix

 | Float -> Float

 | _ -> raise(Failure("illegal binary operator " ^

 string_of_typ t1 ^ " " ^ string_of_op op

^ " " ^

 string_of_typ t2 ^ " in " ^

string_of_expr e)))

 | Pow when (t = Int || t = Float) -> Float

 | Equal | Neq when (t = Int || t = Pix || t=Float) -> Bool

 | Less | Leq | Greater | Geq when (t = Int || t=Pix || t=Float) -> Bool

 | And | Or when t = Bool -> Bool

 | _ -> raise (Failure ("illegal binary operator " ^

 string_of_typ t1 ^ " " ^ string_of_op op ^ " " ^

 string_of_typ t2 ^ " in " ^ string_of_expr e))

)

 | Unop(op, e) as ex -> let t = expr locals func_locals e in

 (match op with

 Neg -> (match t with

 Int -> Int

 | Float -> Float

 | _ -> raise(Failure("Illegal use of " ^ string_of_uop op ^ " with " ^

string_of_typ t)))

 | Not when t = Bool -> Bool

 | Inc | Dec -> (match t with

 Int -> Int

 | Float -> Float

 | Pix -> Pix

 | _ -> raise (Failure ("illegal unary operator " ^ string_of_uop op ^

 string_of_typ t ^ " in " ^ string_of_expr ex)))

 | _ -> raise (Failure ("illegal unary operator " ^ string_of_uop op ^

 string_of_typ t ^ " in " ^ string_of_expr ex))

)

 | Noexpr -> Void

 | Assign(var, e) as ex ->

 let lt = expr locals func_locals var

 and rt = expr locals func_locals e in

 check_assign lt rt (Failure ("illegal assignment " ^

 string_of_typ lt ^ " = " ^ string_of_typ rt ^ " in " ^ string_of_expr ex))

 | Call(fdectr, actuals) as call ->

 (match fdectr with

 Id fname -> let fsign = fname in

 let fd = func_decl func_locals fsign in

 if List.length actuals != List.length fd.formals then

 raise (Failure ("expecting " ^ string_of_int

 (List.length fd.formals) ^ " arguments in " ^ string_of_expr call))

 else

 List.iter2 (fun b e -> let bt = typ_of_bind b in let et = expr locals func_locals e

in 	

	 66	

 ignore (check_assign bt et
 (Failure ("illegal actual argument found " ^ string_of_typ et ^
 " expected " ^ string_of_typ bt ^ " in " ^ string_of_expr e))))
 fd.formals actuals;
 if not fd.checked then (func_checked fd; check_func fd) else ();
 fd.typ
 | _ -> raise(Failure(string_of_expr fdectr ^ " is not a valid function to call")))
 | EleAt(arr, idx) as ele-> let idxt = expr locals func_locals idx in
 if idxt != Int then raise(Failure(string_of_expr idx ^ " of
type " ^ string_of_typ idxt ^
 " is not a valid array index for " ^ string_of_expr arr))
 else (match arr with
 EleAt(iarr, _) -> let iat = expr locals func_locals
iarr in
 (match iat with
 ArrRef(ArrRef(arr_t, _), _) -> arr_t
 | _ -> raise(Failure (string_of_expr ele ^ " is not
a valid array")))
 | _ -> let iat = expr locals func_locals arr in
 (match iat with
 ArrRef(ArrRef(arr_t, _), _) -> ArrRef(arr_t, 0)
 | ArrRef(arr_t, _) -> arr_t
 | _ -> raise(Failure (string_of_expr ele ^ " is
not a valid array"))))
 | PropAcc(e, prp) ->
 (* Find the type of a given thing *)
 let t = expr locals func_locals e in
 (* Make sure the property works for the type *)
 (match t with
 Pix -> (match prp with
 "red" | "green" | "blue" | "alpha"-> Int
 | _ -> raise(Failure ("invalid pixel property " ^ prp)))
 | ArrRef(_, _) -> (match prp with
 "size" -> Int
 | _ -> raise(Failure ("invalid array property " ^ prp)))
 | _ -> raise(Failure ("type " ^ string_of_typ t ^ "has no valid property " ^
prp)))
 | AnonFunc(func_decl) -> let formal_types = List.map (fun (ftyp, _) -> ftyp)
func_decl.formals in
 Func(func_decl.typ, formal_types)

 and check_func func = report_dup (fun _ -> "Duplicate formals in function " ^
func.fname) func.formals;
 List.iter (check_void (fun n -> "Formal arguments cannot have a void type" ^
string_of_dectr n)) func.formals;
 let func_formals = List.fold_left (fun m (typ, dect) -> (match typ with
 Func (t,f) -> let
form_func_sign = (string_of_dectr dect) in
 let
form_form_bind =
 List.map
(fun fo -> (fo, DecId("novar"))) f in
 let fd =
{typ = t; fname = string_of_dectr dect;
 formals =
form_form_bind; 	
	

	 67	

form_form_bind;
 body=[];
checked=true} in
 StringM
ap.add form_func_sign fd m
 | _ -> m)) StringMap.empty
func.formals in
 let formals = List.fold_left (fun m (typ, dect) -> StringMap.add (string_of_dectr
dect) typ m) StringMap.empty func.formals in
 check_stmt formals func_formals func.typ (Block func.body)

 and check_vdef l fl t = function
 InitDectr(d, Noexpr) -> typ_of_bind (t, d)
 | InitDectr(d, e) as initd ->
 let lt = typ_of_bind (t, d)
 and rt = expr l fl e in
 check_assign lt rt (Failure ("illegal initialization " ^ string_of_typ lt ^
 " = " ^ string_of_typ rt ^ " in " ^ string_of_typ t ^ " " ^
string_of_initdectr initd))

 and add_locals locals func_locals t initds =
 List.fold_left (fun m initd -> match initd with InitDectr(d, _) ->
 let tt = check_vdef m func_locals t initd in
 let id = id_of_dectr d in
 if not (StringMap.mem id m) then StringMap.add id tt m
 else raise (Failure ("duplicate local " ^ id))
) locals initds

 and check_block locals func_locals funct = function
 [Return _ as s] -> check_stmt locals func_locals funct s
 | Return _ :: _ -> raise (Failure "nothing may follow a return")
 | Block sl :: ss -> check_block locals func_locals funct sl; check_block locals
func_locals funct ss
 | Vdef(t, initds) :: ss -> check_block (add_locals locals func_locals t (List.rev
initds)) func_locals funct ss
 | s :: ss -> check_stmt locals func_locals funct s; check_block locals func_locals
funct ss
 | [] -> ()

 and check_bool_expr l fl e = if expr l fl e != Bool
 then raise (Failure ("expected Boolean expression in " ^ string_of_expr e))
 else ()

 and check_return rt funct = match (rt, funct) with
 (Float, Pix) | (Pix, Float) | (Pix, Int) | (Int,
Pix) | (Float, Int) | (Int, Float) -> true
 | (_,_) when rt=funct -> true
 | (_,_) -> false

 and check_stmt locals func_locals funct = function
 Block sl -> check_block locals func_locals funct sl
 | Expr e -> ignore (expr locals func_locals e)
 | Return e -> let t = expr locals func_locals e in if (check_return t funct) then ()
else
 raise (Failure ("return gives " ^ string_of_typ t ^ " expected " ^
 string_of_typ funct ^ " in " ^ string_of_expr e)) 	
	

	 68	

 check_stmt locals func_locals funct b2
 | For(e1, e2, e3, st) -> ignore (expr locals func_locals e1); check_bool_expr locals
func_locals e2;
 ignore (expr locals func_locals e3); check_stmt locals
func_locals funct st
 | While(p, s) -> check_bool_expr locals func_locals p; check_stmt locals func_locals
funct s
 | Vdef(_, _) -> raise (Failure ("declaring local variable is only allowed in
blocks"))
 in

 (*Only variables defined outside any block are globals*)
 let check_global_stmt = function
 Vdef(t, initds) -> List.iter
 (fun initd -> match initd with InitDectr(d, _) ->
 let tt = check_vdef StringMap.empty StringMap.empty t initd in
 let id = id_of_dectr d in
 if not (Hashtbl.mem globals id) then Hashtbl.add globals id (*fst initd*)tt
 else raise (Failure ("duplicate global " ^ id)))
 initds
 | stmt -> check_stmt StringMap.empty StringMap.empty Int stmt
 in

 List.iter check_global_stmt (List.rev statements);
 Hashtbl.iter (fun _ f -> if not f.checked then (func_checked f; check_func f) else ())
func_decls 	

8.5 codegen.ml
	
(* codegen.ml *)
(* By: Oswin, Danielle, Tyrus *)

(* easel code generation *)
module L = Llvm
module A = Ast
module StringMap = Map.Make(String)

type easel_env = {
 locals: (L.llvalue * (A.typ * A.dectr * bool)) StringMap.t;
 builder: L.llbuilder;
 the_func: L.llvalue;
 ret_typ: A.typ;
}

let translate (functions, statements) =
 let context = L.global_context() in
 let the_module = L.create_module context "easel"
 and i32_t = L.i32_type context
 and i8_t = L.i8_type context
 and float_t = L.double_type context
 and i1_t = L.i1_type context
 and void_t = L.void_type context
 and pix_t = L.i32_type context
 and arr_t t n = L.array_type t n in
 let n_ptr_t t inner_len = function
 1 -> L.pointer_type t 	

	 69	

 | 2 -> L.pointer_type (arr_t t inner_len)
 | _ -> raise (Failure "invalid n for n_ptr_t")
 in
 let ptr_t t = n_ptr_t t 0 1 in

 let zero = L.const_int i32_t 0 in
 let rec zero_list = function
 1 -> [zero]
 | n when n > 1 -> zero :: zero_list (n - 1)
 | _ -> raise (Failure "invalid n for zero_list")
 in
 let zero_arr n = Array.of_list (zero_list n) in

 let rec lltype_of_typ = function
 A.Int -> i32_t
 | A.Float -> float_t
 | A.Bool -> i1_t
 | A.Void -> void_t
 | A.Pix -> pix_t
 | A.Func(rt, fts) ->
 let formal_t = Array.of_list (List.map (fun ft -> lltype_of_typ ft) fts) in
 ptr_t (L.function_type (lltype_of_typ rt) formal_t)
 | A.ArrRef(A.ArrRef(t, l), _) ->
 let t' = lltype_of_typ t in
 ptr_t (arr_t t' l)
 | A.ArrRef(t, _) ->
 let t' = lltype_of_typ t in
 ptr_t t'
 in

 let rec lltype_of_dectr t = function
 A.DecArr(d, l) -> arr_t (lltype_of_dectr t d) l
 | A.DecId(_) -> lltype_of_typ t
 in

 let rec llval_of_dectr t = function
 A.DecArr(d, l) -> L.const_array (lltype_of_dectr t d) (Array.make l (llval_of_dectr t
d))
 | A.DecId(_) -> (match t with
 A.Int -> L.const_int (lltype_of_typ t) 0
 | A.Pix -> L.const_int (lltype_of_typ t) 0
 | A.Bool -> L.const_int (lltype_of_typ t) 0
 | A.Float -> L.const_float (lltype_of_typ t) 0.0
 | _ -> raise (Failure "not a valid type for declaration")
)

 in

 let rec id_of_dectr = function
 A.DecId(id) -> id
 | A.DecArr(d, _) -> id_of_dectr d
 in

 let sub_dectr = function
 A.DecId(_) as d -> d
 | A.DecArr(d, _) -> d
 in 	

	 70	

 let decarr_len = function
 A.DecArr(_, l) -> l
 | A.DecId(id) -> raise (Failure (id ^ " is not an array"))
 in

 let rec get_arr_id = function
 A.Id(id) -> id
 | A.EleAt(id,_) -> get_arr_id id
 | A.PropAcc(id,_) -> get_arr_id id
 | _ -> raise (Failure "does not have id")
 in

 let globals = Hashtbl.create 8 in

 let function_decls = Hashtbl.create 8 in
 let function_decl tbl fdecl =
 let name = fdecl.A.fname
 and formal_t = Array.of_list (List.map (fun (t,_) -> lltype_of_typ t) fdecl.A.formals)
in
 let ftype = L.function_type (lltype_of_typ fdecl.A.typ) formal_t in
 Hashtbl.add tbl name (L.define_function name ftype the_module, fdecl); tbl in
 let _ = List.fold_left function_decl function_decls functions
 in

 let anonfunc_decls = Hashtbl.create 8 in
 let anonfunc_decl fdecl =
 let name = "____ReSeRvEd_AnOnYmOuS_fUnC__" ^
 (string_of_int ((Hashtbl.length anonfunc_decls) + 1))
 and formal_t = Array.of_list (List.map (fun (t,_) -> lltype_of_typ t) fdecl.A.formals)
in
 let ftype = L.function_type (lltype_of_typ fdecl.A.typ) formal_t in
 let fp = L.define_function name ftype the_module in
 Hashtbl.add anonfunc_decls name (fp, fdecl); fp
 in

 (* built-in functions *)
 let extfunc_draw_def_t = L.var_arg_function_type i32_t [||] in
 let extfunc_draw_def = L.declare_function "draw_default" extfunc_draw_def_t the_module in
 let extfunc_do_draw_t = L.var_arg_function_type i32_t [|ptr_t i32_t; i32_t; i32_t; i32_t;
i32_t|] in
 let extfunc_do_draw = L.declare_function "do_draw" extfunc_do_draw_t the_module in
 let extfunc_printf_t = L.var_arg_function_type i32_t [| L.pointer_type i8_t |] in
 let extfunc_printf = L.declare_function "printf" extfunc_printf_t the_module in

 let extfunc_pow_t = L.function_type float_t [| float_t; float_t |] in
 let extfunc_pow = L.declare_function "pow" extfunc_pow_t the_module in
 let pow_call b e n bdr = L.build_call extfunc_pow [|b; e|] n bdr in

 let extfunc_sin_t = L.var_arg_function_type float_t [|float_t|] in
 let extfunc_sin = L.declare_function "sin" extfunc_sin_t the_module in
 let extfunc_cos_t = L.var_arg_function_type float_t [|float_t|] in
 let extfunc_cos = L.declare_function "cos" extfunc_cos_t the_module in
 let extfunc_tan_t = L.var_arg_function_type float_t [|float_t|] in
 let extfunc_tan = L.declare_function "tan" extfunc_tan_t the_module in

 (* rand and log *)
 let extfunc_log_t = L.var_arg_function_type float_t [|float_t|] in 	

	 71	

 let extfunc_log_t = L.var_arg_function_type float_t [|float_t|] in
 let extfunc_log = L.declare_function "log" extfunc_log_t the_module in

 let extfunc_rand_t = L.function_type float_t [||] in
 let extfunc_rand = L.declare_function "rando" extfunc_rand_t the_module in

 let extfunc_rand_t = L.function_type float_t [|i32_t|] in
 let extfunc_rands = L.declare_function "randos" extfunc_rand_t the_module in

 let rec __dectr_arr_dim n = function
 A.DecArr(d, _) -> __dectr_arr_dim (n + 1) d
 | A.DecId(_) -> n
 in

 let dectr_arr_dim d = __dectr_arr_dim 0 d in

 let lookup env n = try StringMap.find n env.locals
 with Not_found -> Hashtbl.find globals n in

 let load_var env id =
 let (var, (ty, dectr, _)) = lookup env id in
 let dim = dectr_arr_dim dectr in
 if dim = 0 then L.build_load var id env.builder
 else
 let arr_pos = L.build_in_bounds_gep var (zero_arr dim) id env.builder in
 let inner_len = match dectr with A.DecId(_) | A.DecArr(A.DecId(_), _) -> 0 |
A.DecArr(d, _) -> decarr_len d in
 let arr_ptr_t = n_ptr_t (lltype_of_typ ty) inner_len dim in
 L.build_bitcast arr_pos arr_ptr_t id env.builder
 in

 (* Constructing code for expressions *)
 let rec expr env = function
 A.IntLit i -> L.const_int i32_t i
 | A.FloatLit f -> L.const_float float_t f
 | A.BoolLit b -> L.const_int i1_t (if b then 1 else 0)
 | A.PixLit (r_e, g_e, b_e, a_e) -> let r_v = expr env r_e
 and g_v = expr env g_e
 and b_v = expr env b_e
 and a_v = expr env a_e in
 let shift_r = L.const_int i32_t 16777216 (* left shift for
24 bits*)
 and shift_g = L.const_int i32_t 65536 (* left shift for 16
bits*)
 and shift_b = L.const_int i32_t 256 in (* left shift for 8
bits*)
 let r_v' = L.build_mul r_v shift_r "tmp" env.builder
 and g_v' = L.build_mul g_v shift_g "tmp" env.builder
 and b_v' = L.build_mul b_v shift_b "tmp" env.builder in
 let p_v' = L.build_add r_v' g_v' "tmp" env.builder in
 let p_v'' = L.build_add p_v' b_v' "tmp" env.builder in
 L.build_add p_v'' a_v "tmp" env.builder
 | A.Id id -> (try load_var env id
 with Not_found -> fst (Hashtbl.find function_decls id))
 | A.Noexpr -> L.const_int i32_t 0
 | A.Binop (e1, op, e2) ->
 let exp1 = expr env e1 	

	 72	

 and exp2 = expr env e2 in
 let typ1 = L.string_of_lltype (L.type_of exp1)
 and typ2 = L.string_of_lltype (L.type_of exp2) in
 let build_op_by_type opf opi = (match (typ1, typ2) with
 ("double", "double") -> opf
 | ("i32", "i32") -> opi
 | ("double", "i32") ->
 (fun e1 e2 n bdr -> let e2' = L.build_sitofp e2 float_t n bdr in
 opf e1 e2' "tmp" bdr)
 | ("i32", "double") ->
 (fun e1 e2 n bdr -> let e1' = L.build_sitofp e1 float_t n bdr in
 opf e1' e2 "tmp" bdr)
 | _ -> raise (Failure "not a valid type")
) in
 (match op with
 A.Add -> build_op_by_type L.build_fadd L.build_add
 | A.Sub -> build_op_by_type L.build_fsub L.build_sub
 | A.Mult -> build_op_by_type L.build_fmul L.build_mul
 | A.Div -> build_op_by_type L.build_fdiv L.build_sdiv
 | A.Mod -> build_op_by_type L.build_frem L.build_srem
 | A.Pow -> (match (typ1, typ2) with
 ("double", "double") -> pow_call
 | ("double", "i32") -> (fun e1 e2 n bdr -> let e2' = L.build_sitofp e2
float_t "tmp" bdr in
 pow_call e1 e2' n bdr)
 | ("i32", "double") -> (fun e1 e2 n bdr -> let e1' = L.build_sitofp e1
float_t "tmp" bdr in
 pow_call e1' e2 n bdr)
 | ("i32", "i32") -> (fun e1 e2 n bdr -> let e1' = L.build_sitofp e1
float_t "tmp" bdr in
 let e2' = L.build_sitofp e2
float_t "tmp" bdr in
 pow_call e1' e2' n bdr)
 | _ -> raise (Failure "not valid type for power operator")
)
 | A.Equal -> build_op_by_type (L.build_fcmp L.Fcmp.Oeq) (L.build_icmp L.Icmp.Eq)
 | A.Neq -> build_op_by_type (L.build_fcmp L.Fcmp.One) (L.build_icmp L.Icmp.Ne)
 | A.Less -> build_op_by_type (L.build_fcmp L.Fcmp.Olt) (L.build_icmp L.Icmp.Slt)
 | A.Leq -> build_op_by_type (L.build_fcmp L.Fcmp.Ole) (L.build_icmp L.Icmp.Sle)
 | A.Greater -> build_op_by_type (L.build_fcmp L.Fcmp.Ogt) (L.build_icmp
L.Icmp.Sgt)
 | A.Geq -> build_op_by_type (L.build_fcmp L.Fcmp.Oge) (L.build_icmp L.Icmp.Sge)
 | A.And -> L.build_and
 | A.Or -> L.build_or
) exp1 exp2 "tmp" env.builder
 | A.Unop(op, e) ->
 let exp = expr env e in
 let typ = L.string_of_lltype (L.type_of exp) in
 (match op with
 A.Neg -> (match typ with
 "double" -> L.build_fneg exp "tmp" env.builder
 | _ -> L.build_neg exp "tmp" env.builder)
 | A.Not -> L.build_not exp "tmp" env.builder
 | A.Inc -> (match typ with
 "double" -> ignore(expr env (A.Assign(e, A.Binop(e, A.Add,
A.FloatLit(1.0))))); exp
 | _ -> ignore(expr env (A.Assign(e, A.Binop(e, A.Add, A.IntLit(1))))); exp 	

	 73	

)
 | A.Dec -> (match typ with

 "double" -> ignore(expr env (A.Assign(e, A.Binop(e, A.Sub,
A.FloatLit(1.0))))); exp
 | _ -> ignore(expr env (A.Assign(e, A.Binop(e, A.Sub, A.IntLit(1))))); exp
)

)
 | A.Assign(e1, e2) -> let e1_id = get_arr_id e1 in
 let (var, (_, _, fml)) = lookup env e1_id in
 let e1' = (match e1 with

 A.Id _ -> var
 | A.EleAt(arr, ind) -> (match fml with
 (* if this array is not declared in formal, simply access it
in one gep *)

 false ->
 (match arr with
 A.Id _ -> L.build_in_bounds_gep var [|zero; expr env
ind|] e1_id env.builder
 | A.EleAt(_, l) -> L.build_in_bounds_gep var [|zero; expr
env ind; expr env l|] e1_id env.builder
 | _ -> raise (Failure "not a valid expression for array
assignment")

)
 (* if this array is declared in formal, follow the way that
clang does *)
 | true ->

 (match arr with
 A.Id _ -> let tmpp = L.build_load var e1_id env.builder in
 L.build_in_bounds_gep tmpp [|expr env ind|]
e1_id env.builder

 | A.EleAt(_, l) -> let tmpp = L.build_load var e1_id
env.builder in
 let tmpp = L.build_in_bounds_gep tmpp
[|expr env ind|] e1_id env.builder in

 L.build_in_bounds_gep tmpp [|zero;
expr env l|] e1_id env.builder
 | _ -> raise (Failure "not a valid expression for array
assignment")

)
)
 | A.PropAcc(_, _) -> var (* dummy value, real work below *)
 | _ -> raise (Failure "not valid variable for assignment")

)
 and e2' = expr env e2 in
 (match e1 with
 A.PropAcc(e,s) -> let e_v = expr env e in

 let e_v'' = (match s with
 "red" -> let clr = L.const_int i32_t 16777215
 and shift = L.const_int i32_t 24 in
 let e_v' = L.build_and e_v clr "tmp" env.builder

 and e2_v = L.build_shl e2' shift "tmp"
env.builder in
 L.build_or e_v' e2_v "tmp" env.builder
 | "green" -> let clr = L.const_int i32_t 4278255615

 and shift = L.const_int i32_t 16 in
 let e_v' = L.build_and e_v clr "tmp"
env.builder 	

	 74	

 and e2_v = L.build_shl e2' shift "tmp"
env.builder in
 L.build_or e_v' e2_v "tmp" env.builder
 | "blue" -> let clr = L.const_int i32_t 4294902015
 and shift = L.const_int i32_t 8 in
 let e_v' = L.build_and e_v clr "tmp" env.builder
 and e2_v = L.build_shl e2' shift "tmp"
env.builder in
 L.build_or e_v' e2_v "tmp" env.builder
 | "alpha" -> let clr = L.const_int i32_t 4294967040 in
 let e_v' = L.build_and e_v clr "tmp"
env.builder in
 L.build_or e_v' e2' "tmp" env.builder
 | _ -> raise (Failure "not valid property access for
assignment")
) in ignore(L.build_store e_v'' var env.builder); e_v''
 | _ -> ignore(L.build_store e2' e1' env.builder); e2'
)
 | A.EleAt(arr, ind) -> let id = get_arr_id arr in
 let (var, (_, _, fml)) = lookup env id in
 (match fml with
 false -> (match arr with
 A.Id _ -> L.build_load (L.build_in_bounds_gep var [|zero; expr env ind|] id
env.builder) id env.builder
 | A.EleAt(_, l) -> L.build_load (L.build_in_bounds_gep var [|zero; expr env
ind; expr env l|] id env.builder) id env.builder
 | _ -> raise (Failure "not a valid array access")
)
 | true -> (match arr with
 A.Id _ -> let tmpp = L.build_load var id env.builder in
 let tmpp = L.build_in_bounds_gep tmpp [|expr env ind|] id env.builder in
 L.build_load tmpp id env.builder
 | A.EleAt(_, l) ->
 let tmpp = L.build_load var id env.builder in
 let tmpp = L.build_in_bounds_gep tmpp [|expr env ind|] id env.builder in
 let tmpp = L.build_in_bounds_gep tmpp [|zero; expr env l|] id env.builder in
 L.build_load tmpp id env.builder
 | _ -> raise (Failure "not a valid array access")
)
)
 | A.PropAcc(e,s)-> (match s with
 "red" -> let v = expr env e
 and shift = L.const_int i32_t 24 in
 L.build_lshr v shift "tmp" env.builder
 | "green" -> let v = expr env e
 and shift_r = L.const_int i32_t 24
 and shift_g = L.const_int i32_t 16 in
 let r_v = L.build_lshr v shift_r "tmp" env.builder
 and g_v = L.build_lshr v shift_g "tmp" env.builder
 and shift = L.const_int i32_t 256 in
 let r_v' = L.build_mul r_v shift "tmp" env.builder in
 L.build_sub g_v r_v' "tmp" env.builder
 | "blue" -> let v = expr env e
 and shift_g = L.const_int i32_t 16
 and shift_b = L.const_int i32_t 8 in
 let g_v = L.build_ashr v shift_g "tmp" env.builder
 and b_v = L.build_ashr v shift_b "tmp" env.builder 	

	 75	

 and shift_g' = L.const_int i32_t 256 in
 let g_v' = L.build_mul g_v shift_g' "tmp" env.builder in
 L.build_sub b_v g_v' "tmp" env.builder
 | "alpha" -> let v = expr env e
 and shift_b = L.const_int i32_t 8 in
 let b_v = L.build_ashr v shift_b "tmp" env.builder
 and shift_b' = L.const_int i32_t 256 in
 let b_v' = L.build_mul b_v shift_b' "tmp" env.builder in
 L.build_sub v b_v' "tmp" env.builder
 | "size" -> let id = get_arr_id e in
 let (_, (_, dectr, _)) = lookup env id in
 expr env (A.IntLit (decarr_len dectr))
 | _ -> raise (Failure "not a valid property access")
)
 | A.AnonFunc(fdecl) -> anonfunc_decl fdecl
 (* Call external functions *)
 | A.Call (A.Id("draw"), []) -> L.build_call extfunc_draw_def [||] "draw_def"
env.builder
 | A.Call (A.Id("draw"), [A.Id(cid); e2; e3]) ->
 let (c_llval, (_, c_col, _)) = lookup env cid in
 let c_row = sub_dectr c_col in
 let w = decarr_len c_row in
 let h = decarr_len c_col in
 let c_ptr = L.build_in_bounds_gep c_llval (zero_arr 3) "cnvstmp" env.builder in
 L.build_call extfunc_do_draw [| c_ptr; L.const_int i32_t w; L.const_int i32_t
h;
 expr env e2; expr env e3 |] "do_draw" env.builder
 | A.Call (A.Id("draw_size"), [e_c; e_w; e_h; e4; e5]) ->
 let c_llval = expr env e_c in
 let c_ptr = L.build_in_bounds_gep c_llval (zero_arr 2) "cnvstmp" env.builder in
 L.build_call extfunc_do_draw [| c_ptr; expr env e_w; expr env e_h;
 expr env e4; expr env e5 |] "do_draw" env.builder
 | A.Call (A.Id("print"), [e]) ->
 let int_format_str = L.build_global_stringptr "%d\n" "fmt" env.builder in
 L.build_call extfunc_printf [| int_format_str ; (expr env e) |] "printf"
env.builder
 | A.Call (A.Id("printp"), [e]) ->
 let int_format_str = L.build_global_stringptr "#%x\n" "fmt" env.builder in
 L.build_call extfunc_printf [| int_format_str ; (expr env e) |] "printf"
env.builder
 | A.Call (A.Id("printb"), [e]) ->
 let int_format_str = L.build_global_stringptr "%d\n" "fmt" env.builder in
 L.build_call extfunc_printf [| int_format_str ; (expr env e) |] "printf"
env.builder
 | A.Call (A.Id("printfl"), [e]) ->
 let float_format_str = L.build_global_stringptr "%f\n" "fffmt" env.builder in
 L.build_call extfunc_printf [| float_format_str ; (expr env e) |] "printf"
env.builder
 | A.Call (A.Id("sin"), [e]) ->
 L.build_call extfunc_sin [|expr env e|] "sin" env.builder
 | A.Call (A.Id("cos"), [e]) ->
 L.build_call extfunc_cos [|expr env e|] "cos" env.builder
 | A.Call (A.Id("tan"), [e]) ->
 L.build_call extfunc_tan [|expr env e|] "tan" env.builder
 | A.Call (A.Id("log"), [b; e]) ->
 let log_it x = L.build_call extfunc_log [|x|] "tmp_log" env.builder in
 let promote x = (let ex = expr env x in 	 	

	 76	

 let typ = L.string_of_lltype (L.type_of ex) in

 (match typ with

 "double" -> log_it ex

 | "i32" -> (let pex = L.build_sitofp ex float_t "tmp" env.builder in

 log_it pex)

 | _ -> raise (Failure "not a valid type"))) in

 let base = promote b

 and sol = promote e in

 L.build_fdiv (sol) (base) "log" env.builder

 | A.Call (A.Id("rand"), []) -> L.build_call extfunc_rand [||] "rand_call"

env.builder

 | A.Call (A.Id("rand"), [e]) -> L.build_call extfunc_rands [|(expr env e)|]

"rand_call" env.builder

 | A.Call (A.Id(func), act) ->

 let fdef = expr env (A.Id(func)) in

 let ret_t = L.string_of_lltype (L.return_type (L.return_type (L.type_of fdef))) in

 let ret_n = match ret_t with

 "void" -> ""

 | _ -> "tmp" in

 let actuals = List.rev (List.map (expr env) (List.rev act)) in

 L.build_call fdef (Array.of_list actuals) ret_n env.builder

 | A.Call(_,_) -> raise (Failure "not a valid function call")

 in

 let init_var t dectr env = function

 A.IntLit i -> expr env (A.IntLit i)

 | A.FloatLit f -> expr env (A.FloatLit f)

 | A.BoolLit b -> expr env (A.BoolLit b)

 | A.PixLit (r, g, b, a) -> expr env (A.PixLit (r,g,b,a))

 | A.Binop (e1, op, e2) -> expr env (A.Binop(e1,op,e2))

 | _ -> llval_of_dectr t dectr

 in

 let global_var t env = function A.InitDectr(dectr, init) ->

 let inst = llval_of_dectr t dectr in

 let n = id_of_dectr dectr in

 Hashtbl.add globals n (L.define_global n inst the_module, (t, dectr, false));
 if init != A.Noexpr then

 match dectr with

 (* Only store initial values for scalar variables *)

 A.DecId(id) -> ignore (expr env (A.Assign(A.Id(id), init)))

 | A.DecArr(_, _) -> ()

 else ()

 in

 let local_var t env = function A.InitDectr(dectr, init) ->

 let n = id_of_dectr dectr in

 let loc = L.build_alloca (lltype_of_dectr t dectr) n env.builder in

 let _ = match dectr with

 (* Only store initial values for scalar variables *)

 A.DecId(_) -> L.build_store (init_var t dectr env init) loc env.builder

 (* loc is returned as some meaningless dummy value *)

 | A.DecArr(_, _) -> loc in

 let locals = StringMap.add n (loc, (t, dectr, false)) env.locals in

 { env with locals = locals }

 in 	
	 	

	 77	

 (* Invoke "f builder" if the current block doesn't already
 have a terminal (e.g., a branch). *)

 let add_terminal builder f =
 match L.block_terminator (L.insertion_block builder) with
 Some _ -> ()
 | None -> ignore (f builder) in

 let rec stmt env = function
 (* Discard the locals built in the inner block *)
 A.Block sl -> List.fold_left stmt env sl

 | A.Expr e -> ignore (expr env e); env
 | A.Vdef (t, initds) ->
 List.fold_left (local_var t) env (List.rev initds)
 | A.If (pred, then_stmt, else_stmt) ->

 let bool_val = expr env pred in
 let merge_bb = L.append_block context "merge" env.the_func in

 let then_bb = L.append_block context "then" env.the_func in

 let then_env = { env with builder = (L.builder_at_end context then_bb) } in
 add_terminal (stmt then_env then_stmt).builder
 (L.build_br merge_bb);

 let else_bb = L.append_block context "else" env.the_func in
 let else_env = { env with builder = (L.builder_at_end context else_bb) } in
 add_terminal (stmt else_env else_stmt).builder
 (L.build_br merge_bb);

 ignore (L.build_cond_br bool_val then_bb else_bb env.builder);
 { env with builder = (L.builder_at_end context merge_bb) }
 | A.While (pred, body) ->

 let pred_bb = L.append_block context "while" env.the_func in
 ignore (L.build_br pred_bb env.builder);

 let body_bb = L.append_block context "while_body" env.the_func in

 let body_env = { env with builder = (L.builder_at_end context body_bb) } in
 add_terminal (stmt body_env body).builder
 (L.build_br pred_bb);

 let pred_env = { env with builder = (L.builder_at_end context pred_bb) } in
 let pred_v = expr pred_env pred in
 let pred_t = L.type_of pred_v in

 let merge_bb = L.append_block context "merge" env.the_func in
 let cmp_v =
 if pred_t = i32_t then L.build_icmp L.Icmp.Ne pred_v (L.const_int i32_t 0) "cmp"
pred_env.builder

 else pred_v in
 ignore (L.build_cond_br cmp_v body_bb merge_bb pred_env.builder);
 { env with builder = (L.builder_at_end context merge_bb) }

 | A.For (e1, e2, e3, body) -> stmt env
 (A.Block [A.Expr e1 ; A.While (e2, A.Block [body ; A.Expr e3])])

 | A.Return e -> let e' = expr env e in

 let e_t = L.type_of e' in
 ignore (match (env.ret_typ, e_t) with
 (A.Void, _) -> L.build_ret_void env.builder 	

	 78	

 | (A.Int, _) -> let e'' = L.build_fptosi e' i32_t "tmp" env.builder in
 L.build_ret e'' env.builder
 | (A.Float, _) -> let e'' = L.build_sitofp e' float_t "tmp" env.builder in
 L.build_ret e'' env.builder
 | _ -> L.build_ret e' env.builder
); env
 in

 let global_stmt env = function
 A.Vdef(t, initds) -> List.iter (global_var t env) (List.rev initds); env
 | st -> stmt env st
 in

 let build_main_function sl =
 (* Define the main function for executing global statements *)
 let ftype_main = L.function_type i32_t [||] in
 let main_func = L.define_function "main" ftype_main the_module in
 let builder = L.builder_at_end context (L.entry_block main_func) in
 let env = { locals = StringMap.empty; builder = builder; the_func = main_func; ret_typ
= A.Int } in

 let end_env = List.fold_left global_stmt env sl in

 (* Add a return if the last block falls off the end *)
 add_terminal end_env.builder (L.build_ret (L.const_int i32_t 0))
 in

 let build_function_body _ (the_function, fdecl) =
 let builder = L.builder_at_end context (L.entry_block the_function) in
 let add_formal m (ty, dectr) p =
 let n = id_of_dectr(dectr) in
 L.set_value_name n p;
 let local = L.build_alloca (lltype_of_typ ty) n builder in
 ignore (L.build_store p local builder);
 (* the third field indicates whether it is a formal *)
 StringMap.add n (local, (ty, dectr, true)) m
 in
 let formals = List.fold_left2 add_formal StringMap.empty fdecl.A.formals
 (Array.to_list (L.params the_function))
 in
 let env = { locals = formals; builder = builder; the_func = the_function; ret_typ =
fdecl.A.typ } in

 (* Build the code for each statement in the function *)
 let env = stmt env (A.Block fdecl.A.body) in

 (* Add a return if the last block falls off the end *)
 add_terminal env.builder (match fdecl.A.typ with
 A.Void -> L.build_ret_void
 | A.Float -> L.build_ret (L.const_float float_t 0.)
 | t -> L.build_ret (L.const_int (lltype_of_typ t) 0))
 in

 build_main_function (List.rev statements);
 Hashtbl.iter build_function_body function_decls;
 Hashtbl.iter build_function_body anonfunc_decls;
 the_module 	 	

	 79	

8.6 easel.ml
	
(* easel.ml *)
(* By: Oswin, Danielle, Sophie, Tyrus *)

(* Top-level of the easel compiler: scan & parse the input,
 check the resulting AST, generate LLVM IR, and dump the module *)

type action = Ast | LLVM_IR | Compile

let _ =
 let action = if Array.length Sys.argv > 1 then
 List.assoc Sys.argv.(1) [("-a", Ast); (* Print the AST only *)
 ("-l", LLVM_IR); (* Generate LLVM, don't check *)
 ("-c", Compile)] (* Generate, check LLVM IR *)
 else Compile in
 let lexbuf = Lexing.from_channel stdin in
 let ast = Parser.program Scanner.token lexbuf in
 Semant.check ast;
 match action with
 Ast -> print_string (Ast.string_of_program ast)
 | LLVM_IR -> print_string (Llvm.string_of_llmodule (Codegen.translate ast))
 | Compile -> let m = Codegen.translate ast in
 Llvm_analysis.assert_valid_module m;
 print_string (Llvm.string_of_llmodule m) 	
	
8.7 autotest.sh
autotest.sh
By: Oswin, Sophie
#!/bin/sh

Regression testing script for easel
Step through a list of files
Compile, run, and check the output of each expected-to-work test
Compile and check the error of each expected-to-fail test

Path to the LLVM interpreter
LLI="lli"
#LLI="/usr/local/opt/llvm/bin/lli"

Path to the easel compiler. Usually "./easel.native"
Try "_build/easel.native" if ocamlbuild was unable to create a symbolic link.
EASEL="./easel.native"
#EASEL="_build/easel.native"

Set time limit for all operations
ulimit -t 30

globallog=autotest.log
rm -f $globallog
error=0
globalerror=0

keep=0
ast=0 	

	 80	

Usage() {

 echo "Usage: autotest.sh [options] [.es files]"

 echo "-k Keep intermediate files"

 echo "-a Test AST output"

 echo "-h Print this help"

 exit 1

}

SignalError() {

 if [$error -eq 0] ; then

 echo "FAILED"

 error=1

 fi

 echo " $1"

}

Compare <outfile> <reffile> <difffile>
Compares the outfile with reffile. Differences, if any, written to difffile
Compare() {

 generatedfiles="$generatedfiles $3"

 echo diff -wB $1 $2 ">" $3 1>&2

 diff -wB "$1" "$2" > "$3" 2>&1 || {

 SignalError "$1 differs"

 echo "FAILED $1 differs from $2" 1>&2

 }

}

Run <args>
Report the command, run it, and report any errors
Run() {

 echo $* 1>&2

 eval $* || {

 SignalError "$1 failed on $*"

 return 1

 }

}

RunFail <args>
Report the command, run it, and expect an error
RunFail() {

 echo $* 1>&2

 eval $* && {

 SignalError "failed: $* did not report an error"

 return 1

 }

 return 0

}

Check() {

 error=0

 basename=`echo $1 | sed 's/.*\\///

 s/.es$//'`

 reffile=`echo $1 | sed 's/.es$//'`

 echo -n "$basename..."

 echo 1>&2

 echo "###### Testing $basename" 1>&2 	

	 81	

 generatedfiles=""

 if [$ast -eq 1]; then
 generatedfiles="$generatedfiles ${basename}.ast" &&
 Run "$EASEL -a" "<" $1 ">" "${basename}.ast" &&
 Compare ${basename}.ast ${reffile}.ast ${basename}.diff
 else
 generatedfiles="$generatedfiles ${basename}.ll ${basename}.out" &&
 Run "$EASEL" "<" $1 ">" "${basename}.ll" &&
 Run "$LLI" "${basename}.ll" ">" "${basename}.out" &&
 Compare ${basename}.out ${reffile}.out ${basename}.diff
 fi

 # Report the status and clean up the generated files

 if [$error -eq 0] ; then
 if [$keep -eq 0] ; then
 rm -f $generatedfiles
 fi
 echo "OK"
 echo "###### SUCCESS" 1>&2
 else
 echo "###### FAILED" 1>&2
 globalerror=$error
 fi
}

CheckFail() {
 error=0
 basename=`echo $1 | sed 's/.*\\///
 s/.es$//'`
 reffile=`echo $1 | sed 's/.es$//'`

 echo -n "$basename..."

 echo 1>&2
 echo "###### Testing $basename" 1>&2

 generatedfiles=""

 if [$ast -eq 1]; then
 generatedfiles="$generatedfiles ${basename}.err ${basename}.diff" &&
 RunFail "$EASEL -a" "<" $1 "2>" "${basename}.err" ">>" $globallog &&
 Compare ${basename}.err ${reffile}.err ${basename}.diff
 else
 generatedfiles="$generatedfiles ${basename}.err ${basename}.diff" &&
 RunFail "$EASEL" "<" $1 "2>" "${basename}.err" ">>" $globallog &&
 Compare ${basename}.err ${reffile}.err ${basename}.diff
 fi

 # Report the status and clean up the generated files

 if [$error -eq 0] ; then
 if [$keep -eq 0] ; then
 rm -f $generatedfiles
 fi
 echo "OK" 	

	 82	

 echo "###### SUCCESS" 1>&2
 else
 echo "###### FAILED" 1>&2
 globalerror=$error
 fi
}

while getopts "hka" c; do
 case $c in
 k) # Keep intermediate files
 keep=1
 ;;
 a) # Test the pretty-printing of AST
 ast=1
 ;;
 h) # Help
 Usage
 ;;
 esac
done

shift `expr $OPTIND - 1`
Parameters appearing after double dash are positional parameters
["$1" = "--"] && shift

if [$# -ge 1]
then
 files=$@
else
 files="tests/test-*.es tests/fail-*.es"
fi

cd glwrap
make
cd ..
make

for file in $files
do
 case $file in
 test-)
 Check $file 2>> $globallog
 ;;
 fail-)
 CheckFail $file 2>> $globallog
 ;;
 *)
 echo "unknown file type $file"
 globalerror=1
 ;;
 esac
done

#./ecc.sh -l hello.es
#./hello

exit $globalerror 	

	 83	

8.8 Makefile
Make sure ocamlbuild can find opam-managed packages: first run

eval `opam config env`

Easiest way to build: using ocamlbuild, which in turn uses ocamlfind

.PHONY : easel.native

easel.native :

 ocamlbuild -use-ocamlfind -pkgs llvm,llvm.analysis -cflags -w,+a-4 \

 easel.native

"make clean" removes all generated files

.PHONY : clean

clean :

 ocamlbuild -clean

 rm -rf autotest.log *.diff easel scanner.ml parser.ml parser.mli

 rm -rf *.cmx *.cmi *.cmo *.cmx *.o *.output *.ast *.err *.diff *.ll *.out

More detailed: build using ocamlc/ocamlopt + ocamlfind to locate LLVM

OBJS = ast.cmx codegen.cmx parser.cmx scanner.cmx semant.cmx easel.cmx

easel : $(OBJS)

 ocamlfind ocamlopt -linkpkg -package llvm -package llvm.analysis $(OBJS) -o easel

scanner.ml : scanner.mll

 ocamllex scanner.mll

parser.ml parser.mli : parser.mly

 ocamlyacc parser.mly

%.cmo : %.ml

 ocamlc -c $<

%.cmi : %.mli

 ocamlc -c $<

%.cmx : %.ml

 ocamlfind ocamlopt -c -package llvm $<

Generated by "ocamldep *.ml *.mli" after building scanner.ml and parser.ml

ast.cmo :

ast.cmx :

codegen.cmo : ast.cmo

codegen.cmx : ast.cmx

easel.cmo : semant.cmo scanner.cmo parser.cmi codegen.cmo ast.cmo

easel.cmx : semant.cmo scanner.cmx parser.cmx codegen.cmx ast.cmx

parser.cmo : ast.cmo parser.cmi

parser.cmx : ast.cmx parser.cmi

scanner.cmo : parser.cmi

scanner.cmx : parser.cmx

semant.cmo : ast.cmo

semant.cmx : ast.cmx

parser.cmi : ast.cmo 	

	 84	

Building the tarball

GLWRAP = $(filter-out glwrap/_build, $(wildcard glwrap/*))

TESTFILES = $(wildcard tests/test-*.es) $(wildcard tests/test-*.ast) \
 $(wildcard tests/test-*.out) $(wildcard tests/fail-*.es) \
 $(wildcard tests/fail-*.err)

TARFILES = ast.ml codegen.ml Makefile easel.ml parser.mly README.md scanner.mll \
 semant.ml autotest.sh $(GLWRAP) demo $(TESTFILES)

easel.tar.gz: $(TARFILES)
 cd .. && tar czf easel/easel.tar.gz $(TARFILES:%=easel/%) && cd - 	
	
8.9 glwrap/glwrap.c
	
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include <time.h>
/*#include <GL/glew.h>*/
#ifdef __APPLE__
include <GLUT/glut.h>
#else
include <GL/glut.h>
#endif

int do_draw(int *canvas, int w, int h, int x, int y);
void render(void);
void myglinit(void);
double rando();
double randos();

int *easel;
int W, H;

int draw_default() {
#define DW 960
#define DH 960
 int c[DW][DH];
 int x, y;
 for (x = 0; x < DW; x++) {
 for (y = 0; y < DH; y++) {
 if (x > DW/2 && y > DH/2)
 c[x][y] = 0xffffff00; // RGBA
 else
 c[x][y] = 0x00000000;
 }
 }
 do_draw((int *) c, DW, DH, 0, 0);
} 	
	
	

	 85	

int do_draw(int *canvas, int w, int h, int x, int y) {
 char *fake_argv[1];
 int fake_argc = 1;
 fake_argv[0] = strdup("easel");

 easel = canvas;
 W = w;
 H = h;

 // initialize the glut system and create a window
 glutInitWindowSize(W, H);
 glutInitWindowPosition(x, y);
 glutInit(&fake_argc, fake_argv);
 glutInitDisplayMode(GLUT_RGB | GLUT_DOUBLE);
 glutCreateWindow(fake_argv[0]);

 // initialize some OpenGL state, some might be redundant
 myglinit();

 // set callback functions.
 glutDisplayFunc(&render);

 // start the main glut loop, no code runs after this
 glutMainLoop();

 return 0;
}

void render(void) {
#ifdef _DEBUG
 printf("in render\n");
#endif // _DEBUG

#ifdef _DEBUG_VERB
 int x, y;
 for (y = 0; y < H; y++) {
 for (x = 0; x < W; x++) {
 printf("%d ", easel[(y * W + x)]);
 }
 printf("\n");
 }
#endif // _DEBUG_VERB

 // drawpixels draws the rgb data stored in 'easel' to the screen
 glDrawPixels(W, H, GL_RGBA, GL_UNSIGNED_INT_8_8_8_8, easel);

 // in double buffer mode so we swap to avoid a flicker
 glutSwapBuffers();

 // instruct event system to call 'render' again
 // glutPostRedisplay();
}

// set some OpenGL state variables
void myglinit() {
 glMatrixMode(GL_PROJECTION);
 glLoadIdentity(); 	

	 86	

 glMatrixMode(GL_MODELVIEW);
 glLoadIdentity();

 glOrtho(0.0, 1.0, 0.0, 1.0, -1.0, 1.0);
 glClear(GL_COLOR_BUFFER_BIT);
}

double randos(int seed) {
 srand(seed);
 double r = rand();
 return (double) (r/RAND_MAX);
}

double rando() {
 return randos(time(NULL));
} 	

8.10 glwrap/Makefile
OUT_DIR = _build
APP_DIR = apps

SRC = $(wildcard *.c)
CAPPS = $(wildcard $(APP_DIR)/*.c)
LLAPPS = $(wildcard $(APP_DIR)/*.ll)
APPS = $(CAPPS:.c=) $(LLAPPS:.ll=)
OBJ = $(SRC:.c=.o)
LIBNAME = glwrap

TARGETLIB = $(OUT_DIR)/lib$(LIBNAME).a
TARGETAPPS = $(foreach app, $(notdir $(APPS)), $(OUT_DIR)/$(app))

GLFLAGS = -L$(OUT_DIR) -l$(LIBNAME) -lGL -lGLEW -lglut -lm

.PHONY: all dir clean

TARGET = $(TARGETLIB) $(TARGETAPPS)

all: dir $(TARGET)

dir: ${OUT_DIR}

${OUT_DIR}:
 mkdir -p $@

$(TARGETLIB): $(OUT_DIR)/$(OBJ)
 $(AR) rcs $@ $^

$(OUT_DIR)/%.o: %.c
 $(CC) -c -o $@ $^

$(OUT_DIR)/%: $(APP_DIR)/$(notdir %.c) $(TARGETLIB)
 gcc -o $@ $< $(GLFLAGS)

$(OUT_DIR)/%: $(APP_DIR)/$(notdir %.ll) $(TARGETLIB)
 llc -o $@.s $<
 gcc -o $@ $@.s $(GLFLAGS) 	

	 87	

clean:
 $(RM) -rf $(OUT_DIR) 	
	
8.11 Test Suite Files
This is the listing of all files in our test suite and demo/ directory.
	
fail-assign1.err
fail-assign1.es
fail-assign2.err
fail-assign2.es
fail-assign3.err
fail-assign3.es
fail-assign4.err
fail-assign4.es
fail-assign5.err
fail-assign5.es
fail-assign6.err
fail-assign6.es
fail-assign7.err
fail-assign7.es
fail-expr1.err
fail-expr1.es
fail-expr10.err
fail-expr10.es
fail-expr2.err
fail-expr2.es
fail-expr3.err
fail-expr3.es
fail-expr4.err
fail-expr4.es
fail-expr5.err
fail-expr5.es
fail-expr6.err
fail-expr6.es
fail-expr7.err
fail-expr7.es
fail-expr8.err
fail-expr8.es
fail-expr9.err
fail-expr9.es
fail-fun1.err
fail-fun1.es
fail-fun2.err
fail-fun2.es
fail-fun3.err
fail-fun3.es

fail-local.err
fail-local.es
fail-stat.err
fail-stat.es
fail-stmt1.err
fail-stmt1.es
fail-stmt2.err
fail-stmt2.es
fail-stmt3.err
fail-stmt3.es
fail-type1.err
fail-type1.es
fail-type2.err
fail-type2.es
fail-type3.err
fail-type3.es
fail-type4.err
fail-type4.es
fail-type5.err
Fail-type5.es
demo/jset.es
demo/hello.es
demo/mandelbrot.es
demo/mandelbrot2.es
demo/mandelbrot_anon.es
test-anonfunc1.ast
test-anonfunc1.es
test-anonfunc1.out
test-anonfunc2.ast
test-anonfunc2.es
test-anonfunc2.out
test-arith-difftype1.ast
test-arith-difftype1.es
test-arith-difftype1.out
test-arith-difftype2.ast
test-arith-difftype2.es
test-arith-difftype2.out
test-arith.ast
test-arith.es
test-arith.out

	 88	

test-arith2.ast
test-arith2.es
test-arith2.out
test-arr-args1.ast
test-arr-args1.es
test-arr-args1.out
test-arr-args2.ast
test-arr-args2.es
test-arr-args2.out
test-array1.ast
test-array1.es
test-array1.out
test-array2.ast
test-array2.es
test-array2.out
test-array3.ast
test-array3.es
test-array3.out
test-cirfun.ast
test-cirfun.es
test-cirfun.out
test-const.ast
test-const.es
test-const.out
test-fib1.ast
test-fib1.es
test-fib1.out
test-floatlit1.ast
test-floatlit1.es
test-floatlit1.out
test-for1.ast
test-for1.es
test-for1.out
test-for2.ast
test-for2.es
test-for2.out

test-fun-add.ast
test-fun-add.es
test-fun-add.out
test-fun-ptr.ast
test-fun-ptr.es
test-fun-ptr.out
test-global1.ast
test-global1.es
test-global1.out
test-global2.ast
test-global2.es
test-global2.out
test-if1.ast
test-if1.es
test-if1.out
test-if2.ast
test-if2.es
test-if2.out
test-if3.ast
test-if3.es
test-if3.out
test-local-arr1.ast
test-local-arr1.es
test-local-arr1.out
test-pixlit.ast
test-pixlit.es
test-pixlit.out
test-return1.ast
test-return1.es
test-return1.out
test-while1.ast
test-while1.es
test-while1.out
test-while2.ast
test-while2.es
test-while2.out

	

