TEAM MEMBER

- Jin Zhou jz2792
- Pu Ke pk2532
- Yanglu Piao yp2419
- Jianpu Ma jm4437
PRESENTATION OVERVIEW

- Introduction
- Language Features
- Architecture
- Conclusion
ABOUT POLYNOMIALS

What is A Polynomial?

- Mathematical expression written as the sum of products of numbers and variables

Practical Applications

- Model the projection of jet rockets
- Market pattern forecasting
- Drug Effectiveness
- Physical equation
- ...
INTRODUCTION TO POLYGO

- What is PolyGo?
 - A Symbolic Polynomial Manipulation Language

- Why is PolyGo?
 - Flexible Manipulation of Polynomials
 - Algorithmic Customization
 - Light-weighted and easy applicable
LANGUAGE FEATURES

- Ability to solve polynomial problems
 - Arithmetic operation
 - Evaluate, Find root…

- Supports for complex number $3 + 5i$
 - Modulo, conjugation, and equation solving.

- Loops & Breaks:
 - ‘for’ and 'while' loops supported
 - Body enclosed within a block
 - Break for jump out of the loop
DECONSTRUCTION OF POLYNOMIAL

- Coefficient → Float
- Exponent → Indices
- Polynomial → List of float number
- Therefore, for single variable poly type
 - record the length and the coefficient comes the solution.

\[
poly[2] p = \{2.0, 1.0, 3.0\} = 2 + x + 3x^2
\]
Polygo Data Types

- **Int, Float, String, Bool, Complex**
- Basic data types, complex stores as <1, 2.3>

- **Intarr, Floatarr, Boolarr**
- Array list for int, float and bool,
 e.g. int [2]a = [1, 2]

- **Poly**
- Store polynomial coefficient,
 poly [2]a = {3.0, 2.0, 5.0} as 3.0+ 2.0X +5.0X²
LANGUAGE FEATURES

- **Declaration:**
 - All local variables must be declared prior to any statements
 - Variables can be initialized when it is declared. E.g. `int a = 1;`

- **Strict type system:**
 - No automatic type conversion
LANGUAGE FEATURES

- Functions
 - `<return type>` `fname` (formals)
 `{locals; statement lists}

- Mathematical Driven

- Static scoping, Variable redefinable

- Built-in functions such as:
 `print, print_n, order`
SEMANTIC CHECKING

- Function declarations
- Global, formal and local declarations
- Variable initialization
- Type of operands
- Predicate of for and while loop
- Function calls
- Return and break statement
TESTING

- Unit Testing
 - Test for parser, AST and semantic checker

- Integrated Testing
 - Test complete flow once integrated

- Regression Testing
 - Make sure new features don't introduce bugs
ARCHITECTURE

Source Code → Scanner

Tokens

Parser → AST

AST → Semantic Checker

Output

Execute

Machine code

LLVM → IR

Code generation
What is the maximum volume of air inhaled into the lung?

Derivation

Zero point

Evaluate

The volume of air flowing into the lungs during a breath can be represented by the polynomial function:

\[V(t) = -0.041t^3 + 0.181t^2 + 0.202t, \]

where \(V \) is the volume in liters and \(t \) is the time in seconds.

\[t = 3.43 \]

\[V(t) = 1.17 \]
APPLICATION EXAMPLE 2

- Velocity(t)
- Distance(t)
- Accelerated speed(t)
THANKS FOR YOUR ATTENTION!