
HARMONICA
- LANGUAGE FOR PARALLEL COMPUTING

GUIHAO LIANG(GL2520),

JINCHENG LI(JL4569),

XUE WANG(XW2409),

ZIZHANG HU(CVN, ZH2208)

THE LANGUAGE

•Motivation:

• Dominance of multi-processor architectures

• Rise of distributed applications and computing on large data sets

• Languages with built-in concurrency support are becoming
increasingly popular.

THE LANGUAGE

•Goal:

• Provide easy-to-use primitives for programming parallel
programs

• Handle large matrix operations / data frame manipulation / signal
processing computations efficiently

THE LANGUAGE

•Features:
• Concurrency support
• First-class functions
• Compound types (struct)

• Standard math library for scientific computing
• Container libraries (vector, binary search tree)

COMPILER STRUCTURE

• Scanner, Parser: Harmonica => AST

• Semant, Codegen: AST => LLVM module

• Clang: C => LLVM module

• LLVM Linker

RESPONSIBILITIES

Guihao Liang parser, C bindings, pthread library,
preprocessor

Jincheng Li parser, semantic checking, first-class functions,
vector/BST libraries

Xue Wang testing, documentation, language design, parser

Zizhang Hu parser, math library, semantic checking, code
generation

FIRST-CLASS FUNCTIONS

• Functions are no different from variables

• Can be passed as arguments
void map(<int int> f, list[int] arr, int length);

map(plus1, [1,2,3], 3);

• Can be declared as variables and assigned different values
bool bar(int x) { x == 3; }

<int bool> foo = bar;

LAMBDA EXPRESSIONS

• In-line function definitions

• Syntax: lambda => argument list => return type => expression
<int int> plus1 = lambda (int x) int (x + 1);

• Returns one single expression

• No closure support right now. OCaml-LLVM seems to lack support for this.

PARALLEL AND MUTEX

• Lack of support on Ocaml-LLVM thread bindings, and LLVM system thread documents.

• Use Clang as another level of indirection: convert C program to LLVM.

• Using POSIX threads to implement parallel and mutex.

• Mutex is sort of same as POSIX’s. It’s used for concurrency control.

• Parallel takes a function object and a list of arguments, and then spawns threads.

create 4 parallel thread to print out square.
void foo(int a) { printi(a * a);
parallel(foo, [1,2,3,4], 4);

PARALLEL AND MUTEX

• clang -c -pthread -emit-llvm bindings.c

• Convert bingings.c to bingings.bc and embed it into LLVM

• Source in bindings.c

let llmem = L.MemoryBuffer.of_file “bindings.bc” in
let llm = Llvm_bitreader.parse_bitcode context llmem in
ignore (Llvm_linker.link_modules the_module llm
Llvm_linker.Mode.PreserveSource);

TEMPLATE AND PREPROCESSOR

• Preprocessor will do context macro replacement before compilation.

• alias directives will guide the preprocessor to process template program.

• python preprocess.py $@ | ./harmonica.native

alias T int

struct vector_T {
list[T] elements;
int length;
int memsize;
};

struct vector_int {
list[int]
elements;
int length;
int memsize;
};

TESTING

• Test-*.ha cases: expected-to-work

• Fail-*.ha cases: expected-to-fail

• Run ./testall.sh:
• Takes all files starting with test- or fail- and ending with .ha.
• Make executable, run them and redirect stdout to corresponding .out files
• Check diff between these .out files to ref .out files
• If no diff, delete .diff files, returns OK, else keep diff files return FAILED
• All test information goes to testall.log

LIRBRARIES (MATH)

LIBRARIES (VECTOR)

• Simple dynamic array container

• Uses preprocessor macros to accommodate different types

• Similar to how you would implement vectors in C

LIBRARIES (BINARY SEARCH TREE)

• Basic BST with fine-grained locking
struct Node {
int value;
Node lchild;
Node rchild;
mutex lock;

};

• Safely handles operations from multiple threads

DEMO

FUTURE

• Channel

• Function Closure

• Modules and Namespaces

• Better Standard Libraries

