
DNA#

Programming for life

WHO ARE WE?

GURUS

MOtivations
● Scientists and geneticists are seeking to “engineer” DNA

and develop complex computational tools
● Only tools to process genetic data are libraries within

other languages (e.g. BioPython)
○ Large overhead
○ Low customizability

● DNA is rapidly being explored as an alternate form of
data storage

○ “Capacity approaching DNA storage” - Yaniv Erlich (Columbia
University) et al.

○ “Microsoft experiments with DNA storage: 1,000,000,000 TB in a gram”
- Peter Bright

First...a little bit of biology

DNA# In a slide

Data Types
● Native types from C

○ int, bool, char,

● Complex types
○ Strings, Arrays

● DNA specific types
○ DNA, RNA, Nuc, Pep, AA

Some friendly inbuilt operations
● DNA specific operators

○ DNA -> :transcribe
○ RNA +> : translate

● String/DNA friendly operations
○ Overloaded + operator for string types
○ .length function to get size of complex types and arrays

● Generalized print function
○ Can print any type!

Key Features
● Statically typed
● Statically scoped
● Fluid data type conversion (e.g. DNA -> RNA -> peptides)
● Natively supported string functions (string1 + string2)
● No global variables
● All memory stored on stack

Third Party Software

Abstract Syntax Tree

DNA# Architecture
- Built-in C lib & Elegant ext_func_lst

Our language has one built-in C-lib, and a
series of helper functions. It is very easy to
use C-library. There are only three steps to
add one C-function.

(1) Add your function in c_lib.c.
(2) Register the new function in

ext_func_lst table.
(3) Make project, then magic happens.

- Pseudo-Main
Since DNA# is a script style language, it
starts at the first line of *.dnas file. In
‘codegen.ml’, we build a pseudo-main
function to collect all stmts outside other
defined functions and make it the main func in
LLVM.

Testing Suite
● Unit Testing

○ Identifiers (if, for, while)
○ Standard, primitive, and complex data types (dna, rna)
○ Control flow
○ Functions
○ Literals (Nuc, AA, Integer, Double, Bool, Character, String)

● Integration Testing
●
● System testing

DEMO
● Find longest subsequence amongst two DNA sequences and

print protein that would be generated
○ Mutations
○ DNA alignment and sequencing

Applications
● DNA encoding (Huffman encoding, DNA fountain, etc.)
● Yaniv Erlich/NY Genome Center
● Still using biopython and hacked together tools with

large overhead (personal experience)
● iGEM and personal experience with that

Future Directions
● Optimizing the transcribe/translate using encoding

schemes (e.g. DNA Fountain, Huffman)
● Supporting variable nucleotides and file types
● Supporting addition of libraries (e.g. a file i/o library

for different file formats)
● Incorporating type associated global constants, such as

weight, to make computation easier

Questions

References
Funk Programming Language

Dice Programming Language

OCaml Documentation

http://www1.cs.columbia.edu/~sedwards/classes/2012/w4115-fall/reports/Funk.pdf
http://www1.cs.columbia.edu/~sedwards/classes/2012/w4115-fall/reports/Funk.pdf
http://www1.cs.columbia.edu/~sedwards/classes/2015/4115-fall/reports/Dice-presentation.pdf
http://www1.cs.columbia.edu/~sedwards/classes/2015/4115-fall/reports/Dice-presentation.pdf
http://www.ocaml.org/docs/
http://www.ocaml.org/docs/

