

Blox

Final Report
December 20, 2016

Programing Languages and Translators

Professor Stephen Edwards

Group Members
Name UNI

Naeem Bhatti bnb2115

Jonathan Voss jcv2130

Tyrone Wilkinson trw2119

Contents

1 Introduction

2 Language Reference Manual

2.1 Lexical Conventions

2.2 Operators

2.3 Data Types

2.4 Expressions

2.5 Scope

2.6 Statements

2.7 Functions

3 Architecture

3.1 Source Code

3.2 Ast

3.3 Scanner

3.4 Parser

3.5 Analyzer

3.6 Executor

3.7 Generator

3.8 Gen Code

4 Project Plan

4.1 Group-Member Responsibilities

4.2 Project Goals

4.3 Challenges Faced

5 Lessons Learned

5.1 Naeem Bhatti

5.2 Jonathan Voss

5.3 Tyrone Wilkinson

6 Appendix

1 Introduction

What is the best way to fit several objects together to take up the least amount of space?

How can the elements of a system be arranged if only certain parts of each element can be touching.
Given a set of objects can they be arranged in such a way that there are no gaps? These types of
problems, and many more, can be solved by a Blox program.

Blox is an object oriented programming language designed to facilitate the algorithmic
creation of three-dimensional objects. The basic idea in Blox is that any three-dimensional object can
be represented as a 3D array of blocks. Using Blox the developer can create and manipulate these 3D
arrays to represent complicated 3D objects. Built-in functions in the language help the developer
solve structural problems by joining separate parts together, according to specified rules, to create a
desired object. The developer can use Blox to convert any object they create into an Additive
Manufacturing File (AMF), which can then be viewed using 3D viewing software or printed with a 3D
printer.

The AMF format was chosen as the best possible output for several reasons. First and
perhaps most importantly, AMF introduced a host of new features such as allowing for direct control
over an object's color(s), texture(s), and composition(s), while managing to be backwards compatible
with the aging STereoLithography (STL) file format. It was also designed to be non-proprietary, which
makes it a better choice than the similarly-formatted 3D Manufacturing Format (3MF) that Microsoft
introduced and heavily promoted not long after AMF’s approval. The extensive capabilities of AMF
increases the potential of our language.

2 Language Reference Manual

2.1 Lexical Conventions
This section describes the lexical elements that make up Blox source code after preprocessing. These
elements are called tokens. There are five types of tokens: identifiers , keywords , constants ,

operators , and separators . White space, sometimes required to separate tokens, is also described in
this chapter.

Identifiers

Identifiers are sequences of characters used for naming variables, functions, new data types, and
preprocessor macros. You can include letters, decimal digits, and the underscore character ‘_’ in
identifiers. Lowercase letters and uppercase letters are distinct, such that foo and FOO are two
different identifiers.

Keywords

Keywords are special identifiers reserved for use as part of the programming language itself. You
cannot use them for any other purpose. Here is a list of keywords recognized in Blox:

if else for while break continue return void null
int float bool true false string Frame Face
print Convert Build Join

Constants

A constant is a literal numeric or character value, such as 5 or 'm'. All constants are of a particular
data type; you must use type casting to explicitly specify the type of a constant. There are integer
constants, real number constants, character constants, and string constants.

Integer Constants

An integer constant is a sequence of digits assumed to be in base 10, so no prefixes are used.

0123
-45
9

Real Number Constants

A real number constant is a value that represents a fractional (floating point) number. It consists of
a sequence of digits which represents the integer (or “whole”) part of the number, a decimal point,
and a sequence of digits which represents the fractional part. Either the integer part or the fractional
part may be omitted, but not both. The exponent can be either positive or negative. Real number
constants cannot be followed by e or E and an integer exponent.

4.2
.5
0.88

String Constants

A string constant is a sequence of zero or more characters, digits, and escape sequences enclosed
within double quotation marks. A string constant is of type “array of characters”. All string constants
contain a null termination character (\0) as their last character. Strings are stored as arrays of
characters, with no inherent size attribute. The null termination character allows string-processing
functions know where the string ends.

Separators

A separator separates tokens. White space (see subsection) is a separator, but it is not a token. The
other separators are all single-character tokens themselves:

() < > , ;

White Space

White space is the collective term used for several characters: the space character, the tab character,
the newline character and the horizontal tab character. White space is ignored, and is therefore
optional, except when it is used to separate tokens.

Comments

The characters /* introduce a comment, which is terminated with the characters */ . Block comments
are supported, but nested comments are not.

2.2 Operators

Blox supports three types of operators.

1. Assignment operators
2. Comparison operators
3. Logical operators.

Assignment operators store values in variables. The standard assignment operator = simply stores
the value of its right operand in the variable specified by its left operand. As with all assignment
operators, the left operand cannot be a literal or constant value.

Comparison operators are used to compare two objects of the same type. Expressions created with
comparison operators have a result of type bool, either true or false. Comparison operators can be
used with the basic primitive types as well as Frames. The equal-to operator == tests two Frames for
structural equality, are they composed of the same number of blocks in the same three dimensional
arrangement. The result is true if the Frames are equal, and false if the Frames are not equal. The
not-equal-to operator != tests two Frames for structural inequality. The result is true if the Frames
are not equal, and false if the Frames are equal. The dot-equal-to operator, called block equality .= is
only for Frames, and determines whether or not two Frames have the same number of Blocks. The
result is of type bool, true if the Frames have equal number of Blocks, and false if the Frames have
an unequal number of Blocks. Beyond equality, inequality and block-equality, there are comparison
operators greater than, less than, greater than or equal to, and less than or equal to.

Logical operators test the truth value of a pair of operands. All non-zero expressions are considered
true, while any expression evaluating to zero is considered false.

Operator Name Example

= Assign x = 6; /* The value of variable x is now 6 */

+ Addition y = x + 4; /* The value of y is now 10 */

- Subtraction z = y - x; /* The value of z is now 4 */

* Multiplication a = x * y; /* The value of a is now 24 */

/ Division b = y / 5; /* The value of b is now 2 */

% Modulo d = c % x; /* The value of d is now 4 */

&& Logical AND expr1 && expr2 /* Returns true only if both expr are true,
otherwise it returns false */

|| Logical OR expr1 || expr2 /* Returns true if one or both expr are true, if
both are false it returns false */

! Logical NOT !expr1 /* Returns true if expr1 is false, returns false if expr1

is true */

== Equal To z == d /* Returns true */
x == y /* Returns false */

!= Not Equal To z != d /* Returns false */
x != y /* Returns true */

> Greater Than x > y /* Returns false */
a > b /* Returns true */

>= Greater Than or Equal
To

a >= b /* Returns true */
z >= d /* Returns true */

< Less Than x < y /* Returns true */
a < b /* Returns false */

<= Less Than or Equal To x <= y /* Returns true */
z <= d /* Returns true */

[] Access Array Element array[0] /* Returns first element in array */

. Access Object Member object . mem /* Returns member mem in object */

Precedence of Operators

[] .
!
* / %
+ -
> >= < <=
== !=
&&
||
=

2.3 Data Types

Primitive Types

Primitive types are predefined in the Blox language as the most basic data types available, and are
named by their keywords.

int from -2147483648 to 2147483647, inclusive

float from 3.402,823,5 E+38 to 1.4 E-45, inclusive
bool true or false
string “this is a string“

Language Specific Types

There are two language specific data types in Blox: Frame and Face.

Frame

A Frame can be used to represent any object in three dimensional space. It is a record data type
comprised of its dimensions x, y, z and an array of Blocks blocks , whose indices represent three
dimensional coordinates. A Block is the fundamental abstract object of the language. Although the
programmer cannot directly manipulate blocks, the whole understanding of Frames is built upon
Blocks. A block is a cube in three dimensional space, represented by a 6 index array of bools. Each
bool represents a face of the block, and keeps track of whether the face is open/available (true), or
taken/unavailable (false). A conceptual illustration is provided below:

Side Name Identifier
1. Positive y North “N”
2. Negative x West “W”
3. Negative z Back “B”
4. Positive x East “E”
5. Positive z Front “F”
6. Negative y South “S”

Declaring and Initializing Frames

The programmer declares a Frame and initializes its contents by using the Frame keyword, specifying
its dimensions and its name. Declaration and initialization must be done together.

Syntax

Frame < dimension x,dimension y,dimension z > Name ;
Example

Frame <2,2,1> a;
Frame <50,1,50> b;

Upon declaration, a frame is a simple rectangular prism with the dimensions specified at declaration.
However, by performing Joins or Builds, the programmer can create complex Frames that have any
type of irregular shape by joining simple Frames together. Frames are never disjoint, and cannot
overlap.

Face

The Face data type is used to specify a certain point on a Frame. It is a record data type that
comprises of a 3-tuple dim , which represents x, y, z coordinates, and face , which specifies a side of
the block at coordinates x, y, z . Face objects are used in the Join and Build functions to specify where
to join two frames together. Face objects are usually created for a specific Frame, but one Face can
be applied with multiple Frames effectively.

Syntax

Face< x coordinate, y coordinate, z coordinate, face identifier > Name ;
Example

Face<1,2,3,N> y;

Collection Types

Array
Arrays are declared by specifying the data type for its elements, the number of elements it can store
enclosed within a set of brackets, and then its name. Array sizes are constant and indices start at
value 0. Arrays can be initialized during or after declaration by referencing the index.

Syntax

type [Size] Name ;
Example

int[2] x;
Face<1,2,3,N>[5] y;
Frame<5,5,5>[20] z;

2.4 Expressions
An an expression is any legal combination of symbols that represents a value . Expressions can
include separators, operators, variables, constants, and function calls. When an expression has
subexpressions, the innermost expressions are evaluated first.

Example

(x + ((5 * 74) / 37) - 4)

In the above example, 5 * 74 evaluates to 370. Then, 37 is divided from 370, resulting in 10. 4 is
subtracted from 10, resulting in 6, which is finally added to x. The outermost parentheses are not
required.

2.5 Scope
Blox is a block-structured language, meaning the lexical scope of variables do not extend beyond the
pair of curly braces in which they are declared.

Example
{

x = 5;
{

x = 1;
y = 2;

}
print(x); /* the value of x is 5 */

}

2.6 Statements
All statements must end with the semicolon ; character.

Block statements

Syntax
{statement1; statement2; statement3; … }

Example
{

x = 1;
y = 2;

}

Conditional statements

Syntax
if (expression) {statements}
if (expression) {statements} else {statements}
if (expression) {statements} else if (expression) {statements} else {statements}

Example
if (x == y) {return x+1;}
if (x == y) {return x+1;} else {return x-1;}
if (x == y) {return x+1;} else if (x < 1) {return x-1;} else {return 0;}

Loop statements

For loop

Syntax
for (expression; expression; expression) { statements }

Example
int i;
for (i = 0; i < 10; i = i + 1)
{

print(" Hello ");
print(" World! ");

}

While loop

Syntax
while (expression) { statements }

Example
int x = 0;
while (x < 10)
{

print(" Hello ");
print(" World! ");
x++;

}

2.7 Functions

A function returns either a data type or void. A function can be used as an expression itself.

Declaration

Syntax
Return-type identifier (arguments) {}

Example
int add(int x, int y)
{

int a = x + y;

return a;
}

Built-in Functions

Join

Join is a built in function that connects two Frames at specific locations to return a new Frame that
represents the result of the Join.

Syntax

Frame frameC = Join (frameA, faceA, frameB, faceB);
Example

Frame<1,1,1> x;
Frame<1,1,1> y;
Face<1,1,1,E> a;
Face<1,1,1,W> b;
Frame C = Join(x, a, y, b); /* C is now a 2x1x1 Frame */

Join will throw several different errors if the user specifies a Join that isn’t possible:

Face_Taken: One of the Faces specified is already taken
Block_Overlap: The Join would cause the two Frames to overlap
Invalid_Face: The face-identifier of one of the Faces specified isn’t E, W, N, S, F, or B
Opposite_Face: The Faces specified are not opposites: E-W, N-S, or F-B
Invalid_Block: One of the Faces specifies an empty index of the Frame
Block_Out_Of_Bounds: One of the Faces specifies an index outside of the Frame

Build

Build takes two Frames and an array of Faces for each frame and returns an array of all possible
Frames made by joining the two original Frames at the specified faces. If the Face array is empty for
either Frame the algorithm assumes all open Faces as possible Join locations, and returns all
possible results. Before returning, Build removes any duplicates or empty Frames.

Syntax

Frame<1,1,1>[] frmArray = Build(frameA, faceArrA, frameB, faceArrB);
Example

Frame<1,1,1> x;
Frame<1,1,1> y;
Frame<1,1,1>[] C = Build(x, [], y, []);
/* C is now an array of three frames: 2x1x1, 1x2x1, and 1x1x2 */

Build doesn’t throw errors based on being passed arguments that cause invalid Joins, it simply skips
over the result of such Joins. Therefore the programmer can be confident that all the Frames returned
by Build are valid Frames.

Convert

Convert takes a single frame and converts it to an AMF file, which it saves in the current working
directory. Convert returns 1 on success, 0 otherwise.

Syntax

Convert(frameA) ;
Example

Frame<3,3,3> x;
Convert(x);

print

print prints primitive data types to stdout. It returns 1 on success, 0 on error. print is useful for
displaying results of functions and monitoring the progress of the program.

Syntax

print(var) ;
Example

int x = 42;
print(x); /* 42 is printed to stdout */

3 Architecture

3.1 Blox Input
The source file to be compiled is a .blox file that adheres to the standards of the language as
documented in the Language Reference Manual.

3.2 AST
The abstract syntax tree is generated by the parser and represents the overall structure of the
program. All phases proceeding lexical analysis utilize the AST.

3.3 Scanner
The scanner handles the lexical analysis of the .blox file. It separates the program into tokens which
include keywords, constant literals, and operators. Whitespace and comments are discarded. Illegal
character combinations are caught here.

3.4 Parser
The parser performs syntactic analysis on the tokenized code. It analyzes the code for structure and
verifies the syntax based on the defined Context-free Grammar (CFG)--a CFG is a set of rules that
allow a string of tokens to transform into another token. The program is then represented as a tree
of transformations from the symbol Program to the physical tokens, or terminals.

3.5 Analyzer
Semantic analysis is done by the analyzer, which involves analyzing the parsed code for meaning in
order to determine whether it follows the rules of the language. Undeclared variables, duplicate
variables, type mismatches, and the like are reported here. The scoping rules and variable
declarations are checked here as well.

3.6 Executor
The executor houses the built-in functions Join and Build which the programmer can use to
manipulate Frames, along with code that checks the validity of the programmer’s usage of those
functions.

3.7 Generator
Code generation is managed here. Every Frame the programmer calls Convert on is converted into its
associated AMF file.

3.8 Generated Code
The generated AMF file(s) based on the converted Frame(s) in the source code can be viewed,
manipulated, and/or immediately printed from any compatible software.

4 Project Plan

4.1 Group-Member Responsibilities
The original Blox group consisted of four members, with the following responsibilities:

(DROPPED) - Manager
Naeem Bhatti - Language Guru
Tyrone Wilkinson - System Architect
Jonathan Voss - Tester

Unfortunately, a month into the project the old manager dropped the class. With three members
remaining, coding and debugging was split among all group members, each focussing on a particular
section of the compiler.

4.2 Project Goals

The goal of the project was to create a fully functional programming language that could create,
manipulate, and convert to amf a representation of any 3D object, as well as handle C style
arithmetic expressions and functions.

The intended results of compiling a Blox file were:

- An AMF file for any Frame on which Convert is called
- Any specified execution or results printed to stdout

Planned compiler options included:

- Limiting the maximum number of AMF files produced
- Limiting maximum runtime of a program
- Running commands to open generated AMF files with compatible software programs

Blox was designed with several applications in mind:

- Constraint Problems: Given a set of elements and a set of constraints on their
interaction with each other, Blox would be used to find possible solutions to the
system.

- Min/Max Volume, Surface Area, or Dimensions: Given a set of elements Blox would be
able to find solutions that resulted in either the minimum or maximum for such
measurements as volume, surface area, or a certain dimension.

- AMF file creation: Blox simplifies the creation of any AMF file, especially those that
represent large geometric patterns.

- 3D Object Representation: Using Blox it would be possible to generate large libraries
of basic 3D objects, which could in turn be used to create complex structures.

4.3 Challenges Faced

Through the course of the semester, the group ran into many challenges, and ultimately failed to
meet the goals of the project. In the early phase of the project, the group had a hard time settling on
a language idea. Once a basic proposal was agreed upon, a significant amount of time reasoning
about the logic behind the language, how data types would be represented, how functions would
manipulate the data types, and what the ultimate purpose of the language would be. Later in the
project, the group began to realize how intensive allowing full manipulation of objects in three
dimensions was. The planned functionality had to be cut down in several ways, including removing
the ability to represent curves or any angle besides 90 degrees, to allow for rotations in orientation,
to remove blocks from a Frame, or for each block to be assigned an individual color.

The main obstacle that the group faced was getting the various parts of the compiler to work
together. In incremental testing, parts of the Scanner/Parser/Ast, functions that provide the logic of
the compiler, and final code generation worked as intended. However getting everything to fit
together without errors proved to be much harder than the group originally anticipated. This
necessarily forced a reevaluation on the entire implementation since compiling down to AMF meant
that the builtin functions and all of the source code would actually have to be executed in the
compiler, which stood in sharp contrast to Micro C and the majority of projects from past semesters.
It took some time for the group to: 1. Reconceptualize a language which had the basic functionality
of any standard programming language yet incorporated the features that were desired, and 2.
Design it so that its execution was integrated into its compilation. Unfortunately, it was rather late
in the semester when the group once again solidified its vision of the language and identified the
optimal method of actualizing it. Ultimately, the group was unable to complete a fully functional
compiler to connect the functioning front-end, Generator, and AMF Converter, in a way that would
allow for the necessary internal execution of the file.

5 Lessons Learned

5.1 Naeem Bhatti
Blox was just as much of a lesson on teamwork than it was was on writing and learning the inner
workings of a compiler. The most challenging aspect of this semester was finding a way to instil a
sense of urgency. Having a team member drop 3/4's of the way into the semester significantly hurt
the group overall, however this was trumped by individual shortcomings. My advice to future
students would be to heed the reviews and choose your team wisely. Finding motivated and capable
teammates will have the biggest impact on the outcome of your language.

5.2 Jonathan Voss
From the beginning of the semester, I think that one thing we could have improved as a group was to
have a well defined plan for successfully completing our project. For the first half of the semester
there was little communication among the group and it took us a long time to all get on the same
page. In future projects that have many complicated parts that need to fit together seamlessly, I will
focus on creating a plan that includes all the necessary information for any member of the group I’m
working with to have a complete understanding of the task at hand. Another mistake that I made
personally in this project was to underestimate the sheer amount of work that would be required to
reach our goals. If I would have worked to understand all the aspects of the project early on, I would
have been able to work more effectively throughout the whole process. On a more specific note, I
learned a lot about ocaml and how files are compiled. At the beginning of the semester I had no
experience with ocaml or with what all goes into writing a coding language. Now I would like to
consider myself fairly comfortable using ocaml, and although we failed to complete our compiler, I
definitely gained a good understanding about the process. Given more time, I would be interested in
further pursuing a project like Blox. If I had a second chance at this project I would really work to
learn ocaml as early as possible, I feel like my progress was often delayed because I was wasting
time trying to figure out how put the code I needed in the right format.

5.3 Tyrone Wilkinson
The primary lesson learned during this experience is the importance of fully developing a chosen
concept as early as possible in order to determine its feasibility and gain a shared understanding of
the work required to bring it to fruition. Once this has been achieved, all that remains is the
distribution of responsibilities among team members so that the obstacles to overcome become
mostly rooted in the team, obstacles such as personal diligence in completing his or her tasks and
effective communication between members, rather than in the concept itself. Blox was refreshing
and serviceable but perhaps it was these aspects that contributed to both our shared and unique
miscalculations and underestimations, and to the numerous trials experienced, again both shared
and unique, during the attempt to actualize our idea.

6 Appendix

ast.ml
(* binary operators *)

type op =

 | And | Or | Mod

 | Add | Sub | Mult | Div

 | Equal | Neq | Less | Leq | Greater | Geq | FrameEq

(* unary operators *)

type uop = Neg | Not

(* if form is Face<x,y,z,d> A; then id = "";

 if form is Face A = B; then id = A *)

(* block face identifier *)

type face_id = {

 dim : int * int * int;

 face : string;

 fc_id : string

}

(* actual block *)

type blck = {

 faces : bool array;

}

(* if form is Frame<x,y,z> A; then id = "";

 if form is Frame A = B; then id = A *)

(* actual frame *)

type frame = {

 x : int;

 y : int;

 z : int;

 blocks : blck array;

 fr_id : string

}

(* All types *)

type dtype =

 | Int | Bool | Float | String | Void

 | Frame of frame

 | FaceId of face_id

 | Array of dtype * int * string

(* built-in function call parameters *)

type join = frame * face_id * frame * face_id

type build = frame * face_id array * frame * face_id array

(* variable declarations *)

type var_decl = dtype * string

(* expressions *)

type expr =

 | Id of string

 | Lit_Int of int

 | Lit_Flt of float

 | Lit_Str of string

 | Lit_Bool of bool

 | Assign of string * expr

 | Fr_assign of string * expr

 | Fc_assign of string * expr

 | Var_assign of dtype * string * expr

 | Binop of expr * op * expr

 | Unop of uop * expr

 | Call of string * expr list

 | Null

 | Noexpr

(* variable assignments *)

type var_assign = dtype * string * expr

(* statements *)

type stmt =

 | Block of stmt list

 | Expr of expr

 | Join of join

 | Build of build

 | Print of expr

 | Array of dtype * int * string

 | Convert of frame

 | Var_decl of var_decl

 | Return of expr

 | If of expr * stmt * stmt

 | For of expr * expr * expr * stmt

 | While of expr * stmt

 | Break

 | Continue

(* function declaration *)

type func_decl = {

 typ : dtype;

 fname : string;

 formals : var_decl list;

 body : stmt list;

}

(* frame assignment - might need to be frame * frame *)

type fr_assign = string * string

(* face assignment - might need to be frame * frame *)

type fc_assign = string * string

(* gloabls is a combination of var & frame declarations and assignments *)

type globals = {

 var_decls : var_decl list;

 var_assgns : var_assign list;

 fr_assgns : fr_assign list;

 fc_assgns : fc_assign list;

}

(* a blox program is a tuple of globals and function declarations *)

type program = globals list * func_decl list

(* print binary operators *)

let string_of_op = function

 | Add -> "+"

 | Sub -> "-"

 | Mult -> "*"

 | Div -> "/"

 | Equal -> "=="

 | Neq -> "!="

 | Less -> "<"

 | Leq -> "<="

 | Greater -> ">"

 | Geq -> ">="

 | And -> "&&"

 | Or -> "||"

 | FrameEq -> ".="

 | Mod -> "%"

(* print unary operators *)

let string_of_uop = function

 | Neg -> "-"

 | Not -> "!"

let string_of_dim (x,y,z) =

 string_of_int x ^ "," ^

 string_of_int y ^ "," ^

 string_of_int z

let rec get_type = function

 | Int -> Int

 | Bool -> Bool

 | String -> String

 | Float -> Float

 | Frame(fr) -> Frame(fr)

 | FaceId(fc) -> FaceId(fc)

 | Void -> Void

 | Array(x,y,z) -> Array(x,y,z)

(* print datatypes *)

let rec string_of_dtype = function

 | Int -> "int"

 | Bool -> "bool"

 | String -> "string"

 | Float -> "float"

 | Frame(fr) -> "Frame" ^ "<" ^ string_of_dim (fr.x, fr.y, fr.z) ^ ">"

 | FaceId(fc) -> "Face" ^ "<" ^ string_of_dim fc.dim ^ "," ^ fc.face ^ ">"

 | Void -> "void"

 | Array(x,y,z) -> string_of_dtype x ^ "[" ^ string_of_int y ^ "] " ^ z

(* print expressions *)

let rec string_of_expr = function

 | Lit_Int(x) -> string_of_int x

 | Lit_Flt(x) -> string_of_float x

 | Lit_Str(x) -> x

 | Id(x) -> x

 | Lit_Bool(true) -> "true"

 | Lit_Bool(false) -> "false"

 | Assign(x,y) -> x ^ " = " ^ string_of_expr y ^ ";"

 | Fr_assign(x,y) -> "Frame " ^ x ^ " = " ^ string_of_expr y ^ ";"

 | Fc_assign(x,y) -> "Face " ^ x ^ " = " ^ string_of_expr y ^ ";"

 | Var_assign(x,y,z) -> string_of_dtype x ^ " " ^ y ^ " = " ^ string_of_expr z ^ ";"

 | Null -> "null"

 | Binop(e1,o,e2) -> string_of_expr e1 ^ " " ^ string_of_op o ^ " " ^

string_of_expr e2

 | Unop(o,e) -> string_of_uop o ^ string_of_expr e

 | Call(f,el) -> f ^ "(" ^ String.concat ", " (List.map string_of_expr el) ^

")"

 | Noexpr -> ""

(* print variable declarations *)

let string_of_var_decl (x,y) =

 string_of_dtype x ^ " " ^ y ^ ";"

(* print block face identifiers *)

let string_of_face_id (w,x,y,z) =

 "(" ^ string_of_int w ^ ", " ^

 string_of_int x ^ ", " ^

 string_of_int y ^ ", " ^

 z ^ ")"

(* print Join function arguments *)

let string_of_join_args (w,x,y,z) =

 w.fr_id ^ "," ^ x.fc_id ^ "," ^ y.fr_id ^ "," ^ z.fc_id

(* print block face identifiers - not currently used *)

let string_of_face_id_list faceid =

 "(" ^ string_of_dim faceid.dim ^ "," ^ faceid.face ^ ")"

(* print Build function arguments - will substitute the actual face values in here *)

let string_of_build_args (w,x,y,z) =

 let alist = (Array.to_list x) in

 let blist = (Array.to_list z) in

 w.fr_id ^ "," ^ (String.concat "," (List.map (fun f -> f.fc_id) alist)) ^ "," ^

 y.fr_id ^ "," ^ (String.concat "," (List.map (fun f -> f.fc_id) blist))

(* print statements *)

let rec string_of_stmt = function

 | Var_decl(x,y) -> string_of_var_decl (x,y) ^ "\n"

 | Expr(expr) -> string_of_expr expr ^ "\n"

 | Join(w,x,y,z) -> "Join(" ^ string_of_join_args (w,x,y,z) ^ ");\n"

 | Build(w,x,y,z) -> "Build(" ^ string_of_build_args (w,x,y,z) ^ ");\n"

 | Array(x,y,z) -> string_of_dtype x ^ "[" ^ string_of_int y ^ "] " ^ z ^";\n"

 | Print(e) -> "print(" ^ string_of_expr e ^ ");\n"

 | Convert(fr) -> "Convert(" ^ fr.fr_id ^ ");\n"

 | Break -> "break;\n"

 | Continue -> "continue;\n"

 | Return(expr) -> "return " ^ string_of_expr expr ^ ";\n";

 | If(e,s,Block([])) -> "if (" ^ string_of_expr e ^ ")\n" ^ string_of_stmt s

 | If(e,s1,s2) -> "if (" ^ string_of_expr e ^ ")\n" ^ string_of_stmt s1 ^

 "else\n" ^ string_of_stmt s2

 | For(e1,e2,e3,s) -> "for (" ^ string_of_expr e1 ^ "; " ^ string_of_expr e2 ^

 "; " ^ string_of_expr e3 ^ ") " ^ string_of_stmt s

 | While(e,s) -> "while (" ^ string_of_expr e ^ ") " ^ string_of_stmt s

 | Block(stmts) -> "{\n" ^ String.concat "" (List.map string_of_stmt stmts) ^

"}\n"

(* print variable assignments *)

let string_of_vassign (t,id,exp) =

 string_of_dtype t ^ " " ^ id ^ " = " ^

 string_of_expr exp ^ ";\n"

(* print frame assignments *)

let string_of_frassign (fn1,fn2) =

 "Frame " ^ fn1 ^ " = " ^ fn2 ^ ";"

(* print face assignments *)

let string_of_fcassign (fn1,fn2) =

 "Face " ^ fn1 ^ " = " ^ fn2 ^ ";"

(* print function declarations *)

let string_of_func_decl fd =

 string_of_dtype fd.typ ^ " " ^ fd.fname ^ "(" ^

 String.concat ", " (List.map snd fd.formals) ^ ")\n{\n" ^

 String.concat "" (List.map string_of_stmt fd.body) ^ "}\n"

(* print globals *)

let string_of_globals glob =

 String.concat "" (List.map string_of_var_decl glob.var_decls) ^

 String.concat "" (List.map string_of_vassign glob.var_assgns) ^

 String.concat "" (List.map string_of_frassign glob.fr_assgns) ^

 String.concat "" (List.map string_of_fcassign glob.fc_assgns) ^"\n"

(* print blox program *)

let string_of_program (globals,funcs) =

 String.concat "" (List.rev (List.map string_of_globals globals)) ^ "\n" ^

 String.concat "\n" (List.rev (List.map string_of_func_decl funcs))

scanner.mll
{ open Parser }

rule token = parse

 | [' ' '\t' '\r' '\n'] { token lexbuf } (* Whitespace *)

 | "/* " { comment lexbuf } (* Comments *)

 | '=' { ASSIGN }

 | ',' { COMMA }

 | ';' { SEMI }

 | '{' { LCURL }

 | '}' { RCURL }

 | '(' { LPAREN }

 | ')' { RPAREN }

 | '[' { LBRACK }

 | ']' { RBRACK }

 | '+' { PLUS }

 | '-' { MINUS }

 | '*' { TIMES }

 | '/' { DIVIDE }

 | '%' { MOD }

 | '!' { NOT }

 | '.' { DOT }

 | '<' { LT }

 | '>' { GT }

 | "!=" { NEQ }

 | "==" { EQ }

 | "<=" { LEQ }

 | ">=" { GEQ }

 | ".=" { FRAMEEQ }

 | "&&" { AND }

 | "||" { OR }

 | "if" { IF }

 | "else" { ELSE }

 | "for" { FOR }

 | "while" { WHILE }

 | "return" { RETURN }

 | "break" { BREAK }

 | "continue" { CONTINUE }

 | "void" { VOID }

 | "null" { NULL }

 | "int" { INT }

 | "bool" { BOOL }

 | "true" { TRUE }

 | "false" { FALSE }

 | "string" { STRING }

 | "float" { FLOAT }

 | "print" { PRINT }

 | "Convert" { CONVERT }

 | "Build" { BUILD }

 | "Join" { JOIN }

 | "Face" { FACE }

 | "Frame" { FRAME }

 | ['0'-'9']+ as lxm { LIT_INT(int_of_string lxm) }

 | ['0'-'9']+ '.' ['0'-'9']+ as lxm { LIT_FLT(float_of_string lxm) }

 | ['\"'] [^'\"']* ['\"'] as lxm { LIT_STR(lxm) }

 | ['a'-'z' 'A'-'Z']['a'-'z' 'A'-'Z' '0'-'9' '_'] * as lxm { ID(lxm) }

 | eof { EOF }

 | _ as char { raise (Failure("illegal character " ^ Char.escaped char)) }

and comment = parse

 | " */" { token lexbuf }

 | _ { comment lexbuf }

parser.mly
%{ open Ast %}

%token ASSIGN COMMA SEMI

%token LCURL RCURL LPAREN RPAREN LBRACK RBRACK

%token PLUS MINUS TIMES DIVIDE MOD

%token NOT DOT

%token LT GT EQ NEQ LEQ GEQ FRAMEEQ AND OR

%token IF ELSE FOR WHILE RETURN BREAK CONTINUE

%token VOID INT BOOL STRING FLOAT

%token TRUE FALSE NULL EOF

%token PRINT BUILD JOIN FRAME SET FACE CONVERT

%token <string> ID

%token <string> LIT_STR

%token <float> LIT_FLT

%token <int> LIT_INT

%nonassoc NOELSE

%nonassoc ELSE

%right ASSIGN

%left OR

%left AND

%left EQ NEQ

%left LT GT LEQ GEQ

%left PLUS MINUS

%left TIMES DIVIDE

%right NOT NEG

%start program

%type <Ast.program> program

%%

program:

 decls EOF { $1 }

decls:

 |/* nothing */ { ([], [])}

 | decls globals { ($2 :: fst $1), snd $1 }

 | decls func_decl { fst $1, ($2 :: snd $1) }

dtype:

 | INT { Int }

 | FLOAT { Float }

 | BOOL { Bool }

 | STRING { String }

 | VOID { Void }

 | FRAME frame_decl { Frame($2) }

 | FACE face_decl { FaceId($2) }

 | dtype LBRACK LIT_INT RBRACK ID { Array($1, $3, $5) }

face_decl:

 LT LIT_INT COMMA LIT_INT COMMA LIT_INT COMMA ID GT

 { { dim = ($2,$4,$6); face = $8; fc_id = ""} }

frame_decl:

 LT LIT_INT COMMA LIT_INT COMMA LIT_INT GT

 { { x = $2; y = $4; z = $6; fr_id = ""; blocks = [||] } }

globals:

 | dtype ID SEMI /* var decls */

 { { var_decls = [($1, $2)];

 var_assgns = [];

 fr_assgns = [];

 fc_assgns = []; } }

 | dtype ID ASSIGN expr SEMI /* var assigns */

 { { var_decls = [];

 var_assgns = [($1, $2, $4)];

 fr_assgns = [];

 fc_assgns = []; } }

 | FRAME ID ASSIGN ID SEMI /* fr assigns */

 { { var_decls = [];

 var_assgns = [];

 fr_assgns = [($2, $4)];

 fc_assgns = []; } }

 | FACE ID ASSIGN ID SEMI /* fc assigns */

 { { var_decls = [];

 var_assgns = [];

 fr_assgns = [];

 fc_assgns = [($2, $4)]; } }

func_decl:

 dtype ID LPAREN formals_opt RPAREN LCURL stmt_list RCURL

 { { typ = $1;

 fname = $2;

 formals = $4;

 body = List.rev $7 } }

formals_opt:

 |/* nothing */{ [] }

 | formal_list { List.rev $1 }

formal_list:

 | dtype ID { [($1,$2)] }

 | formal_list COMMA dtype ID { ($3,$4) :: $1 }

stmt_list:

 |/* nothing */ { [] }

 | stmt_list stmt { $2 :: $1 }

stmt:

 | expr SEMI { Expr($1) }

 | BREAK SEMI { Break }

 | CONTINUE SEMI { Continue }

 | dtype ID SEMI { Var_decl($1,$2) }

 | LCURL stmt_list RCURL { Block(List.rev $2) }

 | RETURN SEMI { Return Noexpr }

 | RETURN expr SEMI { Return $2 }

 | PRINT LPAREN expr RPAREN SEMI { Print($3) }

 | dtype LBRACK LIT_INT RBRACK ID SEMI { Array($1, $3, $5) }

 | CONVERT LPAREN ID RPAREN SEMI

 { Convert({ x = 0; y = 0; z = 0; fr_id = $3; blocks = [||] }) }

 | JOIN LPAREN ID COMMA ID COMMA ID COMMA ID RPAREN SEMI

 { Join({ x = 0; y = 0; z = 0; fr_id = $3; blocks = [||] },

 { dim = (0,0,0); face = ""; fc_id = $5},

 { x = 0; y = 0; z = 0; fr_id = $7; blocks = [||] },

 { dim = (0,0,0); face = ""; fc_id = $9}) }

 | BUILD LPAREN ID COMMA ID COMMA ID COMMA ID RPAREN SEMI

 { Build({ x = 0; y = 0; z = 0; fr_id = $3; blocks = [||] },

 Array.of_list [{ dim = (0,0,0); face = "*"; fc_id = $5}],

 { x = 0; y = 0; z = 0; fr_id = $7; blocks = [||] },

 Array.of_list [{ dim = (0,0,0); face = "*"; fc_id = $9}]) }

 | IF LPAREN expr RPAREN stmt %prec NOELSE

 { If($3, $5, Block([])) }

 | IF LPAREN expr RPAREN stmt ELSE stmt

 { If($3, $5, $7) }

 | FOR LPAREN expr_opt SEMI expr SEMI expr_opt RPAREN stmt

 { For($3, $5, $7, $9) }

 | WHILE LPAREN expr RPAREN stmt

 { While($3, $5) }

expr_opt:

 |/* nothing */{ Noexpr }

 | expr { $1 }

expr:

 | ID { Id($1) }

 | LIT_INT { Lit_Int($1) }

 | LIT_FLT { Lit_Flt($1) }

 | LIT_STR { Lit_Str($1) }

 | TRUE { Lit_Bool(true) }

 | FALSE { Lit_Bool(false) }

 | ID ASSIGN expr { Assign($1, $3) }

 | FRAME ID ASSIGN expr { Fr_assign($2, $4) }

 | FACE ID ASSIGN expr { Fc_assign($2, $4) }

 | dtype ID ASSIGN expr { Var_assign($1, $2, $4) }

 | expr PLUS expr { Binop($1, Add, $3) }

 | expr MINUS expr { Binop($1, Sub, $3) }

 | expr TIMES expr { Binop($1, Mult, $3) }

 | expr DIVIDE expr { Binop($1, Div, $3) }

 | expr EQ expr { Binop($1, Equal, $3) }

 | expr NEQ expr { Binop($1, Neq, $3) }

 | expr LT expr { Binop($1, Less, $3) }

 | expr LEQ expr { Binop($1, Leq, $3) }

 | expr GT expr { Binop($1, Greater, $3) }

 | expr GEQ expr { Binop($1, Geq, $3) }

 | expr AND expr { Binop($1, And, $3) }

 | expr OR expr { Binop($1, Or, $3) }

 | MINUS expr %prec NEG { Unop(Neg, $2) }

 | ID LPAREN actuals_opt RPAREN { Call($1, $3) }

 | LPAREN expr RPAREN { $2 }

actuals_opt:

 | /* nothing */ { [] }

 | actuals_list { List.rev $1 }

actuals_list:

 | expr { [$1] }

 | actuals_list COMMA expr { $3 :: $1 }

analyzer.ml
open Ast

module StringMap = Map.Make(String)

let analyze (globals, functions) =

 (* Raise an exception if the given list has a duplicate frames *)

 let report_duplicate exceptf list =

 let rec helper = function

 | n1 :: n2 :: _ when n1 = n2 -> raise (Failure (exceptf n1))

 | _ :: t -> helper t

 | [] -> ()

 in helper (List.sort compare list)

 in

 (* Raise an exception if a given binding is to a void type *)

 let check_not_void exceptf = function

 | (Void, n) -> raise (Failure (exceptf n))

 | _ -> ()

 in

 (* Raise an excp if given rvalue type can't be assigned to the given lvalue type *)

 let check_assign lvaluet rvaluet err =

 if lvaluet == rvaluet then lvaluet

 else raise err

 in

 (* Returns the global var decl list *)

 let get_var_decl globs =

 (List.map (fun (x,y) -> y) globs.var_decls)

 in

 (* Check for restricted function names *)

 if List.mem "print" (List.map (fun fd -> fd.fname) functions) then

 raise (Failure ("function print may not be defined"))

 else ();

 if List.mem "build" (List.map (fun fd -> fd.fname) functions) then

 raise (Failure ("function build may not be defined"))

 else ();

 if List.mem "join" (List.map (fun fd -> fd.fname) functions) then

 raise (Failure ("function join may not be defined"))

 else ();

 if List.mem "convert" (List.map (fun fd -> fd.fname) functions) then

 raise (Failure ("function convert may not be defined"))

 else ();

 (* Check for duplicate function names *)

 report_duplicate (fun n -> "duplicate function " ^ n) (List.map (fun fd -> fd.fname)

functions);

 (* Function declarations for built-in functions *)

 let built_in_decls =

 StringMap.add "Join"

 { typ = Void;

 fname = "Join";

 formals = [(Frame ({ x = 0; y = 0; z = 0; blocks = [||]; fr_id = ""}), "A");

 (FaceId({ dim = (0,0,0); face = ""; fc_id = ""}), "B");

 (Frame ({ x = 0; y = 0; z = 0; blocks = [||]; fr_id = ""}), "C");

 (FaceId({ dim = (0,0,0); face = ""; fc_id = ""}), "D");];

 body = [] };

 StringMap.add "Build"

 { typ = Void;

 fname = "Build";

 formals = [(Frame ({ x = 0; y = 0; z = 0; blocks = [||]; fr_id = ""}), "A");

 (FaceId({ dim = (0,0,0); face = ""; fc_id = ""}), "B");

 (Frame ({ x = 0; y = 0; z = 0; blocks = [||]; fr_id = ""}), "C");

 (FaceId({ dim = (0,0,0); face = ""; fc_id = ""}), "D");];

 body = [] };

 StringMap.add "Convert"

 { typ = Void;

 fname = "Convert";

 formals = [(Frame ({ x = 0; y = 0; z = 0; blocks = [||]; fr_id = ""}), "A")];

 body = [] };

 StringMap.add "print"

 { typ = Void;

 fname = "print";

 formals = [(String, "s")];

 body = [] }

 (StringMap.singleton "print_bool"

 { typ = Void;

 fname = "print_bool";

 formals = [(Bool, "b")];

 body = [] });

 (StringMap.singleton "print_int"

 { typ = Void;

 fname = "print_int";

 formals = [(Int, "i")];

 body = [] });

 (StringMap.singleton "print_flt"

 { typ = Void;

 fname = "print_flt";

 formals = [(Float, "f")];

 body = [] });

 in

 (* Add built-in function declarations to map, mapping: func_name -> func_decl *)

 let function_decls =

 List.fold_left (fun map fdecl -> StringMap.add fdecl.fname fdecl map)

built_in_decls functions

 in

 (* Check for unrecognized functions *)

 let function_decl s = try StringMap.find s function_decls

 with Not_found -> raise (Failure ("unrecognized function " ^ s))

 in

 (* Check for main function *)

 let check_main_decl = try StringMap.find "main" function_decls

 with Not_found -> raise (Failure ("missing main() entry point"))

 in

 check_main_decl;

 let check_globals glob =

 report_duplicate (fun n -> "duplicate global var/frame/face decl" ^ n)

 (List.rev (get_var_decl glob))

 in

 List.iter check_globals globals;

executor.ml
open Ast

exception Face_Taken of string;;

exception Block_Overlap of string;;

exception Invalid_Face of string;;

exception Opposite_Face of string;;

exception Invalid_Block of string;;

exception Block_Out_Of_Bounds of string;;

(* Return a frame with the given dimensions *)

let faceCons x y z w n =

 let fc = {dim = (x, y, z); face = w; fc_id = n} in

 fc;;

(* Takes 1D index and corresponding frame and returns 3D coordinates*)

let getCoord i frm =

 let z_val = (i mod frm.z) in

 let y_val = (((i - z_val) / frm.z) mod frm.y) in

 let x_val = ((((i - z_val) / frm.z) - y_val) / frm.y) in

 (x_val, y_val, z_val);;

(* Takes face array index returns face string *)

let getFcStr i = match i with

 0 -> "E"

| 1 -> "W"

| 2 -> "N"

| 3 -> "S"

| 4 -> "F"

| 5 -> "B"

| _ -> raise (Invalid_Face "Face index out of bounds");;

(* faceCheck takes a 1D array of blocks and its 3D dimensions, it updates block

 faces as unavailable if they are joined to another block *)

let faceCheck a x y z=

 let gx elx =

 if Array.length elx.faces = 6 then(

 Array.set elx.faces 1 false;

 false)

 else true in

 let gy ely =

 if Array.length ely.faces = 6 then(

 Array.set ely.faces 3 false;

 false)

 else true in

 let gz elz =

 if Array.length elz.faces = 6 then(

 Array.set elz.faces 5 false;

 false)

 else true in

 let f i el =

 if Array.length el.faces = 6 then(

 Array.set el.faces 0 (if ((i + (y*z)) < (x*y*z)) then(

 gx(a.(i + y*z)))

 else true;);

 Array.set el.faces 2 (if (((i mod (y*z)) + z) < (y*z)) then(

 gy(a.(i + z)))

 else true;);

 Array.set el.faces 4 (if (((i mod z) + 1) < z) then(

 gz(a.(i + 1)))

 else true)) in

 Array.iteri f a;;

(* Checks arguments given to join function and returns coordinate shifts *)

let argCheck frameA fidA frameB fidB =

 let (ax, ay, az) = fidA.dim in

 let (bx, by, bz) = fidB.dim in

 let af = fidA.face in

 let bf = fidB.face in

 let aArray = Array.init (Array.length frameA.blocks) (fun i -> {faces = Array.copy

frameA.blocks.(i).faces}) in

 let ai = ((((ax * frameA.y) + ay) * frameA.z) + az) in

 let bArray = Array.init (Array.length frameB.blocks) (fun i -> {faces = Array.copy

frameB.blocks.(i).faces}) in

 let bi = ((((bx * frameB.y) + by) * frameB.z) + bz) in

 (* Check specified blocks are within array boundaries *)

 if (ax >= frameA.x) || (ay >= frameA.y) || (az >= frameA.z)

 then raise (Block_Out_Of_Bounds "Specified block for first frame is outside array

boundaries");

 if (bx >= frameB.x) || (by >= frameB.y) || (bz >= frameB.z)

 then raise (Block_Out_Of_Bounds "Specified block for second frame is outside array

boundaries");

 (* Check given block exists *)

 if not (Array.length frameA.blocks.(ai).faces = 6)

 then raise (Invalid_Block "Specified Block for first frame does not exist");

 if not (Array.length frameB.blocks.(bi).faces = 6)

 then raise (Invalid_Block "Specified Block for second frame does not exist");

 (* Check for valid faces *)

 if (af = "E") || (af = "W") || (af = "N") || (af = "S") || (af = "F") || (af = "B")

 then ignore()

 else raise (Invalid_Face "Specified face for first frame must be E, W, N, S, F, or

B");

 if (bf = "E") || (bf = "W") || (bf = "N") || (bf = "S") || (bf = "F") || (bf = "B")

 then ignore()

 else raise (Invalid_Face "Specified face for second frame must be E, W, N, S, F, or

B");

 let aface =

 (if af = "E" then

 aArray.(ai).faces.(0)

 else if af = "W" then

 aArray.(ai).faces.(1)

 else if af = "N" then

 aArray.(ai).faces.(2)

 else if af = "S" then

 aArray.(ai).faces.(3)

 else if af = "F" then

 aArray.(ai).faces.(4)

 else if af = "B" then

 aArray.(ai).faces.(5)

 else false) in

 let (bface, bx_shift, by_shift, bz_shift) =

 (if bf = "E" then (bArray.(bi).faces.(0), (ax - 1) - bx, ay - by, az - bz)

 else if bf = "W" then(bArray.(bi).faces.(1), (ax + 1) - bx, ay - by, az - bz)

 else if bf = "N" then(bArray.(bi).faces.(2), ax - bx, (ay - 1) - by, az - bz)

 else if bf = "S" then(bArray.(bi).faces.(3), ax - bx, (ay + 1) - by, az - bz)

 else if bf = "F" then(bArray.(bi).faces.(4), ax - bx, ay - by, (az - 1) - bz)

 else if bf = "B" then(bArray.(bi).faces.(5), ax - bx, ay - by, (az + 1) - bz)

 else (false, 0, 0, 0)) in

 (* check if frameA's block face is available *)

 if not(aface) then

 raise (Face_Taken "Specified face of block in first frame is unavailable");

 (* check if frameB's block face is available *)

 if not(bface) then

 raise (Face_Taken "Specified face of block in second frame is unavailable");

 (* check for opposite faces *)

 if (((af = "E") && not(bf = "W")) ||

 ((af = "W") && not(bf = "E"))) then

 raise (Opposite_Face "Must specify opposite faces");

 if (((af = "N") && not(bf = "S")) ||

 ((af = "S") && not(bf = "N"))) then

 raise (Opposite_Face "Must specify opposite faces");

 if (((af = "F") && not(bf = "B")) ||

 ((af = "B") && not(bf = "F"))) then

 raise (Opposite_Face "Must specify opposite faces");

 (* Determine shift values for A and B *)

 let (ax_shift, bx_shift) =

 (if bx_shift < 0 then (-bx_shift, 0) else (0, bx_shift)) in

 let (ay_shift, by_shift) =

 (if by_shift < 0 then (-by_shift, 0) else (0, by_shift)) in

 let (az_shift, bz_shift) =

 (if bz_shift < 0 then (-bz_shift, 0) else (0, bz_shift)) in

 (* Return shift values and copied arrays *)

 (ax_shift, ay_shift, az_shift, bx_shift, by_shift, bz_shift, aArray, bArray);;

(* Joins two frames *)

let join frameA fidA frameB fidB =

 let (ax_shift, ay_shift, az_shift, bx_shift, by_shift, bz_shift, aArray, bArray) =

argCheck frameA fidA frameB fidB in

 (* Determine size of new array *)

 let cx = (max (frameA.x + ax_shift) (frameB.x + bx_shift)) in

 let cy = (max (frameA.y + ay_shift) (frameB.y + by_shift)) in

 let cz = (max (frameA.z + az_shift) (frameB.z + bz_shift)) in

 (* Create new array of blocks *)

 let c = Array.init (cx * cy * cz) (fun _ -> let b = {faces = [||]} in b) in

 (* Fill c with blocks from array A *)

 let f i el =

 if Array.length el.faces = 6 then(

 let (x_val, y_val, z_val) = getCoord i frameA in

 let cz_val = z_val + az_shift in

 let cy_val = y_val + ay_shift in

 let cx_val = x_val + ax_shift in

 let ci = ((((cx_val * cy) + cy_val) * cz) + cz_val) in

 Array.set c ci el) in

 Array.iteri f aArray;

 (* Fill c with blocks from array B *)

 let g i el =

 if Array.length el.faces = 6 then(

 let (x_val, y_val, z_val) = getCoord i frameB in

 let cz_val = z_val + bz_shift in

 let cy_val = y_val + by_shift in

 let cx_val = x_val + bx_shift in

 let ci = ((((cx_val * cy) + cy_val) * cz) + cz_val) in

 if (Array.length c.(ci).faces = 0) then(

 Array.set c ci el)

 else raise (Block_Overlap "The specified join causes overlap")) in

 Array.iteri g bArray;

 (* Run faceCheck *)

 faceCheck c cx cy cz;

 (* Create and return resulting frame C *)

 let frameC = {

 x = cx;

 y = cy;

 z = cz;

 blocks = c;

 fr_id = "Result";

 } in

 frameC;;

(* build takes two frames and an array of face ID's for each frame, returns

 all possible frames made by joining the two original frames at the specified

 faces. If the faceID array is empty for either frame the algorithm assumes

 all open faces as possible join locations *)

let build frameA faceArrA frameB faceArrB =

 (* Create an array large enough to hold the maximum number of possible results *)

 let returnArr = match (Array.length faceArrA, Array.length faceArrB) with

 (0, 0) -> Array.init (6*(Array.length frameA.blocks)*(Array.length

frameB.blocks)) (fun _ -> {x = 0; y = 0; z = 0; blocks = [||]; fr_id = ""})

 | (a, 0) -> Array.init (a*(Array.length frameA.blocks)) (fun _ -> {x = 0; y = 0;

z = 0; blocks = [||]; fr_id = ""})

 | (0, b) -> Array.init (b*(Array.length frameB.blocks)) (fun _ -> {x = 0; y = 0;

z = 0; blocks = [||]; fr_id = ""})

 | (a, b) -> Array.init (a*b) (fun _ -> {x = 0; y = 0; z = 0; blocks = [||]; fr_id

= ""}) in

 (* Return all faces in fLB that can be joined to face el *)

 let fndFcsB el fLB = match el.face with

 | "E" -> Array.map (fun x -> if (x.face = "W") then x else {dim = (0,0,0); face =

"Empty"; fc_id = ""}) fLB

 | "W" -> Array.map (fun x -> if (x.face = "E") then x else {dim = (0,0,0); face =

"Empty"; fc_id = ""}) fLB

 | "N" -> Array.map (fun x -> if (x.face = "S") then x else {dim = (0,0,0); face =

"Empty"; fc_id = ""}) fLB

 | "S" -> Array.map (fun x -> if (x.face = "N") then x else {dim = (0,0,0); face =

"Empty"; fc_id = ""}) fLB

 | "F" -> Array.map (fun x -> if (x.face = "B") then x else {dim = (0,0,0); face =

"Empty"; fc_id = ""}) fLB

 | "B" -> Array.map (fun x -> if (x.face = "F") then x else {dim = (0,0,0); face =

"Empty"; fc_id = ""}) fLB

 | _ -> raise (Invalid_Face "A given face string for the first frame is not

formated as one of: E, W, N, S, F, B") in

 (* Return all available faces in frm *)

 let allFc frm =

 let allFcArr = Array.init ((Array.length frm.blocks) * 6) (fun _ -> {dim = (0,0,0);

face = "Empty"; fc_id = ""}) in

 let count = ref 0 in

 let finder1 i el =

 let finder2 j fel =

 if fel then(

 Array.set allFcArr !count {dim = (getCoord i frm); face = (getFcStr j); fc_id

= ""};

 incr count) in

 if Array.length el.faces = 6 then(

 Array.iteri finder2 el.faces) in

 Array.iteri finder1 frm.blocks;

 allFcArr in

 (* join frameA and frameB at every possible combination in flA and flB *)

 let joinAB fLA fLB =

 let count = ref 0 in

 let joiner1 elA =

 let joiner2 elB =

 if elB.face = "Empty" then ignore() else(

 try(

 Array.set returnArr !count (join frameA (elA) frameB (elB));

 incr count)

 with

 | Face_Taken x -> ignore()

 | Block_Overlap x -> ignore()

 | Invalid_Face x -> ignore()

 | Opposite_Face x -> ignore()

 | Invalid_Block x -> ignore()

 | Block_Out_Of_Bounds x -> ignore())in

 if elA.face = "Empty" then ignore() else(Array.iter joiner2 (fndFcsB elA fLB)) in

 Array.iter joiner1 fLA in

 (* Call join on specified faces of frameA and frameB *)

 let num fLA fLB = match (Array.length fLA, Array.length fLB) with

 | (0, 0) -> joinAB (allFc frameA) (allFc frameB)

 | (x, 0) -> joinAB fLA (allFc frameB)

 | (0, y) -> joinAB (allFc frameA) fLB

 | (x, y) -> joinAB fLA fLB in

 num faceArrA faceArrB;

 (* Remove duplicate and empty frames from results *)

 let returnList = Array.to_list returnArr in

 let returnList = List.sort_uniq compare returnList in

 let returnList = if (List.hd returnList).x = 0 then List.tl returnList else

returnList in

 let returnArr = Array.of_list returnList in

 returnArr;;

 (* RETURN ONE FRAME VERSION OF BUILD *)

 (* build takes two frames and an array of face ID's for each frame, returns

 all possible frames made by joining the two original frames at the specified

 faces. If the faceID array is empty for either frame the algorithm assumes

 all open faces as possible join locations *)

let buildone frameA faceArrA frameB faceArrB returnstring =

 (* Create an array large enough to hold the maximum number of possible results *)

 let returnArr = match (Array.length faceArrA, Array.length faceArrB) with

 (0, 0) -> Array.init (6*(Array.length frameA.blocks)*(Array.length

frameB.blocks)) (fun _ -> {x = 0; y = 0; z = 0; blocks = [||]; fr_id = ""})

 | (a, 0) -> Array.init (a*(Array.length frameA.blocks)) (fun _ -> {x = 0; y = 0;

z = 0; blocks = [||]; fr_id = ""})

 | (0, b) -> Array.init (b*(Array.length frameB.blocks)) (fun _ -> {x = 0; y = 0;

z = 0; blocks = [||]; fr_id = ""})

 | (a, b) -> Array.init (a*b) (fun _ -> {x = 0; y = 0; z = 0; blocks = [||]; fr_id

= ""}) in

 (* Return all faces in fLB that can be joined to face el *)

 let fndFcsB el fLB = match el.face with

 | "E" -> Array.map (fun x -> if (x.face = "W") then x else {dim = (0,0,0); face =

"Empty"; fc_id = ""}) fLB

 | "W" -> Array.map (fun x -> if (x.face = "E") then x else {dim = (0,0,0); face =

"Empty"; fc_id = ""}) fLB

 | "N" -> Array.map (fun x -> if (x.face = "S") then x else {dim = (0,0,0); face =

"Empty"; fc_id = ""}) fLB

 | "S" -> Array.map (fun x -> if (x.face = "N") then x else {dim = (0,0,0); face =

"Empty"; fc_id = ""}) fLB

 | "F" -> Array.map (fun x -> if (x.face = "B") then x else {dim = (0,0,0); face =

"Empty"; fc_id = ""}) fLB

 | "B" -> Array.map (fun x -> if (x.face = "F") then x else {dim = (0,0,0); face =

"Empty"; fc_id = ""}) fLB

 | _ -> raise (Invalid_Face "A given face string for the first frame is not

formated as one of: E, W, N, S, F, B") in

 (* Return all available faces in frm *)

 let allFc frm =

 let allFcArr = Array.init ((Array.length frm.blocks) * 6) (fun _ -> {dim = (0,0,0);

face = "Empty"; fc_id = ""}) in

 let count = ref 0 in

 let finder1 i el =

 let finder2 j fel =

 if fel then(

 Array.set allFcArr !count {dim = (getCoord i frm); face = (getFcStr j); fc_id

= ""};

 incr count) in

 if Array.length el.faces = 6 then(

 Array.iteri finder2 el.faces) in

 Array.iteri finder1 frm.blocks;

 allFcArr in

 (* join frameA and frameB at every possible combination in flA and flB *)

 let joinAB fLA fLB =

 let count = ref 0 in

 let joiner1 elA =

 let joiner2 elB =

 if elB.face = "Empty" then ignore() else(

 try(

 Array.set returnArr !count (join frameA (elA) frameB (elB));

 incr count)

 with

 | Face_Taken x -> ignore()

 | Block_Overlap x -> ignore()

 | Invalid_Face x -> ignore()

 | Opposite_Face x -> ignore()

 | Invalid_Block x -> ignore()

 | Block_Out_Of_Bounds x -> ignore())in

 if elA.face = "Empty" then ignore() else(Array.iter joiner2 (fndFcsB elA fLB)) in

 Array.iter joiner1 fLA in

 (* Call join on specified faces of frameA and frameB *)

 let num fLA fLB = match (Array.length fLA, Array.length fLB) with

 | (0, 0) -> joinAB (allFc frameA) (allFc frameB)

 | (x, 0) -> joinAB fLA (allFc frameB)

 | (0, y) -> joinAB (allFc frameA) fLB

 | (x, y) -> joinAB fLA fLB in

 (* Returns the smallest overall frame from the build *)

 let smallest iA =

 let index = ref 0 in

 let xyz = ref 1000000 in

 let finder i el =

 if (el.x + el.y + el.z) < !xyz then(

 xyz := (el.x + el.y + el.z);

 index := i) in

 Array.iteri finder iA;

 iA.(!index) in

 (* Returns the largest overall frame from the build *)

 let largest iA =

 let index = ref 0 in

 let xyz = ref 0 in

 let finder i el =

 if (el.x + el.y + el.z) > !xyz then(

 xyz := (el.x + el.y + el.z);

 index := i) in

 Array.iteri finder iA;

 iA.(!index) in

 (* Returns the frame with the smallest x dimension from the build *)

 let smallestx iA =

 let index = ref 0 in

 let x = ref 1000000 in

 let finder i el =

 if el.x < !x then(

 x := el.x;

 index := i) in

 Array.iteri finder iA;

 iA.(!index) in

 (* Returns the frame with the largest x dimension from the build *)

 let largestx iA =

 let index = ref 0 in

 let x = ref 0 in

 let finder i el =

 if el.x > !x then(

 x := el.x;

 index := i) in

 Array.iteri finder iA;

 iA.(!index) in

 (* Returns the frame with the smallest y dimension from the build *)

 let smallesty iA =

 let index = ref 0 in

 let y = ref 1000000 in

 let finder i el =

 if el.y < !y then(

 y := el.y;

 index := i) in

 Array.iteri finder iA;

 iA.(!index) in

 (* Returns the frame with the largest y dimension from the build *)

 let largesty iA =

 let index = ref 0 in

 let y = ref 0 in

 let finder i el =

 if el.y > !y then(

 y := el.y;

 index := i) in

 Array.iteri finder iA;

 iA.(!index) in

 (* Returns the frame with the smallest z dimension from the build *)

 let smallestz iA =

 let index = ref 0 in

 let z = ref 1000000 in

 let finder i el =

 if el.z < !z then(

 z := el.z;

 index := i) in

 Array.iteri finder iA;

 iA.(!index) in

 (* Returns the frame with the largest z dimension from the build *)

 let largestz iA =

 let index = ref 0 in

 let z = ref 0 in

 let finder i el =

 if el.z > !z then(

 z := el.z;

 index := i) in

 Array.iteri finder iA;

 iA.(!index) in

 (* Returns a random frame from the build *)

 let random iA =

 let n = Random.int (Array.length iA) in

 Array.get iA n in

 (* Matches build return specifier, calls function to return *)

 let returner rs rA = match rs with

 "smallest" -> smallest rA

 | "largest" -> largest rA

 | "smallestx" -> smallestx rA

 | "largestx" -> largestx rA

 | "smallesty" -> smallesty rA

 | "largesty" -> largesty rA

 | "smallestz" -> smallestz rA

 | "largestz" -> largestz rA

 | _ -> random rA in

 num faceArrA faceArrB;

 (* Remove duplicate and empty frames from results *)

 let returnList = Array.to_list returnArr in

 let returnList = List.sort_uniq compare returnList in

 let returnList = if (List.hd returnList).x = 0 then List.tl returnList else

returnList in

 let returnArr = Array.of_list returnList in

 if (Array.length returnArr) > 0 then returner returnstring returnArr else {x = 0; y =

0; z = 0; blocks = [||]; fr_id = ""};;

(* Return a frame with the given dimensions *)

let frameCons x y z n =

 let arr = Array.init (x*y*z) (fun _ -> {faces = [|true;true;true;true;true;true|]})

in

 let frm = {x = x; y = y; z = z; blocks = arr; fr_id = n} in

 faceCheck frm.blocks x y z;

 frm;;

let execute (globals, functions) =

 print_endline "Add stack execution code here ...\n"

generator.ml
open Ast

open Printf

exception Face_Taken of string;;

exception Block_Overlap of string;;

exception Invalid_Face of string;;

exception Opposite_Face of string;;

exception Invalid_Block of string;;

exception Block_Out_Of_Bounds of string;;

let generate frm =

 let name = frm.fr_id ^ ".amf" in

 let oc = open_out name in

 let x = ref 0 in

 let y = ref 0 in

 let z = ref 0 in

 let z_val = ref 0 in

 let y_val = ref 0 in

 let x_val = ref 0 in

 let vertices = ref [|0; 1; 2; 3; 4; 5; 6; 7|] in

 let line = ref 8 in

 let top = "<?xml version=\"1.0\" encoding=\"utf-8\"?>\n<amf>\n\t<object

id=\"1\">\n\t\t<mesh>" in

 let bottom = "\t\t</mesh>\n\t</object>\n</amf>" in

 let vertexstart = "\t\t\t<vertices>" in

 let vertexend = "\t\t\t</vertices>" in

 let vpart1 = "<vertex><coordinates><x>" in

 let vpart2 = "</x><y>" in

 let vpart3 = "</y><z>" in

 let vpart4 = "</z></coordinates></vertex>" in

 let trianglestart = "\t\t\t<volume>" in

 let triangleend = "\t\t\t</volume>" in

 let tpart1 = "<triangle><v1>" in

 let tpart2 = "</v1><v2>" in

 let tpart3 = "</v2><v3>" in

 let tpart4 = "</v3></triangle>" in

 let check = ref 0 in

 let displacement = ref 0 in

 let actlength = ref 0 in

 let length = ref (Array.length frm.blocks) in

 fprintf oc "%s\n" top;

 fprintf oc "%s\n" vertexstart;

 while (!check < !length) do(

 if ((Array.length frm.blocks.(!check).faces) = 6) then(

 z_val := (!check mod frm.z);

 y_val := (((!check - !z_val) / frm.z) mod frm.y);

 x_val := ((((!check - !z_val) / frm.z) - !y_val) / frm.y);

 while (!line > 0) do(

 if (!line > 4) then

 x := !x_val

 else(

 x := !x_val - 1

);

 if (!line mod 4 = 0 || !line mod 4 = 3) then

 y := !y_val

 else(

 y := !y_val - 1

);

 if (!line mod 2 = 0) then

 z := !z_val

 else(

 z := !z_val - 1

);

 fprintf oc "\t\t\t\t%s%d%s%d%s%d%s\n" vpart1 !x vpart2 !y vpart3 !z

vpart4;

 line := !line - 1

)done;

 check := !check + 1;

 actlength := !actlength + 1;

 line := 8

)

 else(

 check := !check + 1

)

)done;

 fprintf oc "%s\n" vertexend;

 fprintf oc "%s\n" trianglestart;

 check := 0;

 while (!actlength > !check) do(

 displacement := !check * 8;

 fprintf oc "\t\t\t\t%s%d%s%d%s%d%s\n" tpart1 (!vertices.(0) + !displacement)

tpart2 (!vertices.(1) + !displacement) tpart3 (!vertices.(3) + !displacement) tpart4;

(* write each triangle *)

 fprintf oc "\t\t\t\t%s%d%s%d%s%d%s\n" tpart1 (!vertices.(0) + !displacement)

tpart2 (!vertices.(2) + !displacement) tpart3 (!vertices.(3) + !displacement) tpart4;

(* write each triangle *)

 fprintf oc "\t\t\t\t%s%d%s%d%s%d%s\n" tpart1 (!vertices.(5) + !displacement)

tpart2 (!vertices.(6) + !displacement) tpart3 (!vertices.(7) + !displacement) tpart4;

(* write each triangle *)

 fprintf oc "\t\t\t\t%s%d%s%d%s%d%s\n" tpart1 (!vertices.(4) + !displacement)

tpart2 (!vertices.(5) + !displacement) tpart3 (!vertices.(6) + !displacement) tpart4;

(* write each triangle *)

 fprintf oc "\t\t\t\t%s%d%s%d%s%d%s\n" tpart1 (!vertices.(0) + !displacement)

tpart2 (!vertices.(1) + !displacement) tpart3 (!vertices.(5) + !displacement) tpart4;

(* write each triangle *)

 fprintf oc "\t\t\t\t%s%d%s%d%s%d%s\n" tpart1 (!vertices.(0) + !displacement)

tpart2 (!vertices.(4) + !displacement) tpart3 (!vertices.(5) + !displacement) tpart4;

(* write each triangle *)

 fprintf oc "\t\t\t\t%s%d%s%d%s%d%s\n" tpart1 (!vertices.(2) + !displacement)

tpart2 (!vertices.(3) + !displacement) tpart3 (!vertices.(7) + !displacement) tpart4;

(* write each triangle *)

 fprintf oc "\t\t\t\t%s%d%s%d%s%d%s\n" tpart1 (!vertices.(2) + !displacement)

tpart2 (!vertices.(6) + !displacement) tpart3 (!vertices.(7) + !displacement) tpart4;

(* write each triangle *)

 fprintf oc "\t\t\t\t%s%d%s%d%s%d%s\n" tpart1 (!vertices.(0) + !displacement)

tpart2 (!vertices.(2) + !displacement) tpart3 (!vertices.(6) + !displacement) tpart4;

(* write each triangle *)

 fprintf oc "\t\t\t\t%s%d%s%d%s%d%s\n" tpart1 (!vertices.(0) + !displacement)

tpart2 (!vertices.(4) + !displacement) tpart3 (!vertices.(6) + !displacement) tpart4;

(* write each triangle *)

 fprintf oc "\t\t\t\t%s%d%s%d%s%d%s\n" tpart1 (!vertices.(1) + !displacement)

tpart2 (!vertices.(3) + !displacement) tpart3 (!vertices.(7) + !displacement) tpart4;

(* write each triangle *)

 fprintf oc "\t\t\t\t%s%d%s%d%s%d%s\n" tpart1 (!vertices.(1) + !displacement)

tpart2 (!vertices.(5) + !displacement) tpart3 (!vertices.(7) + !displacement) tpart4;

(* write each triangle *)

 check := !check + 1;

)done;

 fprintf oc "%s\n" triangleend;

 fprintf oc "%s\n" bottom;

 close_out oc;;

Makefile
.PHONY: Create-Scanner Create-Parser Create-AST \

Compile-Scanner \

Compile-Parser Compile-Analyzer Compile-Generator Compile-Executor \

Compile-Blox Link-Objects \

AST-Test Executor-Test Compile-Test \

Run-Menhir-Test Blox.tar.gz compiler Demo

name of blox binary file

EXEC = blox

#name of HelloWorld testfile

HELLO = HelloWorld

name of test shell script

TESTSH = testAll

lexer (scanner) and parser generators

-v : verbose output option for ocamlyacc

LEXGEN = ocamllex

PARSGEN = ocamlyacc -v

ocaml compiler and flags

-c : compile without producing executable files

-o : specify name of output file produced by compiler

OCC1 = ocamlc -c

OCC2 = ocamlc -o

source files, generated files, testing, and AMF/output directories

SRC = src

GEN = gen

OBJ = obj

TST = tests

AMF = amf

TARFILES = $(SRC) $(GEN) $(OBJ) $(TST) $(TESTSH).sh README.md Makefile \

 $(TESTFILES:%=tests/%)

add src, gen, and obj directories to Make path when looking for files

VPATH = src:gen:obj

testfiles := $(wildcard $(TST)/*)

NO_COLOR = \033[0m

OK_COLOR = \033[32;01m

OK_STR = $(OK_COLOR)[OK]$(NO_COLOR)

SUC_STR = $(OK_COLOR)[BUILD-SUCCESSFUL]$(NO_COLOR)

AWK_CMD = awk '{ printf "\n%-50s %-10s\n",$$1, $$2; }'

PRINT_OK = printf "$@ $(OK_STR)" | $(AWK_CMD)

BUILD_OK = printf "$@ $(SUC_STR)" | $(AWK_CMD)

compiler: Clean Create-Scanner Create-AST Create-Parser \

Compile-Scanner Compile-Parser Compile-Analyzer Compile-Executor \

Compile-Generator Compile-Blox Link-Objects

Create-Scanner:

@$(LEXGEN) $(SRC)/scanner.mll

@mv $(SRC)/scanner.ml $(GEN)/scanner.ml

@$(PRINT_OK)

Create-Parser:

@$(PARSGEN) $(SRC)/parser.mly

@mv $(SRC)/parser.ml $(GEN)/parser.ml

@mv $(SRC)/parser.mli $(GEN)/parser.mli

@mv $(SRC)/parser.output $(GEN)/parser.output

@#cat $(GEN)/parser.output

@$(PRINT_OK)

Create-AST:

@$(OCC1) $(SRC)/ast.ml

@mv $(SRC)/ast.cmi $(GEN)/ast.cmi

@mv $(SRC)/ast.cmo $(OBJ)/ast.cmo

@$(PRINT_OK)

Compile-Scanner:

@$(OCC1) -I $(GEN) $(GEN)/parser.mli $(GEN)/scanner.ml

@mv $(GEN)/scanner.cmo $(OBJ)/scanner.cmo

@$(PRINT_OK)

Compile-Parser:

@$(OCC1) -I $(GEN) $(GEN)/parser.ml

@mv $(GEN)/parser.cmo $(OBJ)/parser.cmo

@$(PRINT_OK)

Compile-Analyzer:

@$(OCC1) -I $(GEN) $(SRC)/analyzer.ml

@mv $(SRC)/analyzer.cmo $(OBJ)/analyzer.cmo

@mv $(SRC)/analyzer.cmi $(GEN)/analyzer.cmi

@$(PRINT_OK)

Compile-Executor:

@$(OCC1) -I $(GEN) $(SRC)/executor.ml

@mv $(SRC)/executor.cmo $(OBJ)/executor.cmo

@mv $(SRC)/executor.cmi $(GEN)/executor.cmi

@$(PRINT_OK)

Compile-Generator:

@$(OCC1) -I $(GEN) $(SRC)/generator.ml

@mv $(SRC)/generator.cmo $(OBJ)/generator.cmo

@mv $(SRC)/generator.cmi $(GEN)/generator.cmi

@$(PRINT_OK)

Compile-Blox:

@$(OCC1) -I $(GEN) $(SRC)/blox.ml

@mv $(SRC)/blox.cmo $(OBJ)/blox.cmo

@mv $(SRC)/blox.cmi $(GEN)/blox.cmi

@$(PRINT_OK)

Link-Objects:

@$(OCC2) $(EXEC) $(OBJ)/parser.cmo $(OBJ)/scanner.cmo $(OBJ)/ast.cmo \

$(OBJ)/analyzer.cmo $(OBJ)/executor.cmo $(OBJ)/generator.cmo $(OBJ)/blox.cmo

@$(BUILD_OK)

@echo "\n---\n"

AST-Test: compiler

@echo "[$(HELLO).blox:]\n"

@./$(EXEC) -a $(SRC)/$(HELLO).blox

@$(PRINT_OK)

Executor-Test: compiler

@echo "[$(HELLO).blox:]\n"

@./$(EXEC) -e $(SRC)/$(HELLO).blox

@$(PRINT_OK)

Compile-Test: compiler

@echo "[$(HELLO).blox:]\n"

@./$(EXEC) -c $(SRC)/$(HELLO).blox

@$(PRINT_OK)

Run-Test-Script:

@./$(TESTSH).sh

@mv $(TESTSH).log $(GEN)/$(TESTSH).log

@sleep .3

@echo "[Opening $(TESTSH).sh log ...]"

@cat $(GEN)/$(TESTSH).log

@$(PRINT_OK)

Run-Menhir-Test:

menhir --interpret --interpret-show-cst $(SRC)/parser.mly

@$(PRINT_OK)

Demo: Clean

@ocamlc -o demo src/exedemo.ml

@mv src/exedemo.cmi gen/

@mv src/exedemo.cmo obj/

@./demo

@$(PRINT_OK)

Clean:

@echo "\n---\n"

@rm -rf $(GEN)/*

@rm -rf $(OBJ)/*

@rm -rf $(EXEC)

@rm -rf demo *.amf

@$(PRINT_OK)

@echo "\n"

Blox.tar.gz : $(TARFILES) Clean

@cd .. && tar czf Blox/Blox.tar.gz $(TARFILES:%=Blox/%)

@$(PRINT_OK)

testAll.sh
#!/bin/sh

Testing script for Blox, adapted from microc testing suite

Step through a list of files

Compile, run, and check the output of each expected-to-work test

Compile and check the error of each expected-to-fail test

Set time limit for all operations

ulimit -t 30

globallog=testAll.log

rm -f $globallog

error=0

globalerror=0

keep=0

Usage() {

 echo "Usage: testAll.sh [options] [.blox files]"

 echo "-k Keep intermediate files"

 echo "-h Print this help"

 exit 1

}

SignalError() {

 if [$error -eq 0] ; then

echo "FAILED"

error=1

 fi

 echo " $1"

}

Compare <outfile> <reffile> <difffile>

Compares the outfile with reffile. Differences, if any, written to difffile

Compare() {

 generatedfiles="$generatedfiles $3"

 echo diff -b $1 $2 ">" $3 1>&2

 diff -b "$1" "$2" > "$3" 2>&1 || {

 SignalError "$1 $2 differs"

 echo "FAILED $1 differs from $2" 1>&2

 }

}

Run <args>

Report the command, run it, and report any errors

Run() {

 echo $* 1>&2

 eval $* || {

 SignalError "$1 failed on $*"

 return 1

 }

}

RunFail <args>

Report the command, run it, and expect an error

RunFail() {

 echo $* 1>&2

 eval $* && {

 SignalError "failed: $* did not report an error"

 return 1

 }

 return 0

}

Check() {

 error=0

 basename=`echo $1 | sed 's/.*\\///

 s/.blox//'`

 reffile=`echo $1 | sed 's/.blox$//'`

 basedir="`echo $1 | sed 's/\/[^\/]*$//'`/."

 echo "$basename..."

 echo 1>&2

 echo "###### Testing $basename" 1>&2

 generatedfiles=""

 # Report the status and clean up the generated files

 if [$error -eq 0] ; then

if [$keep -eq 0] ; then

 rm -f $generatedfiles

fi

echo "OK"

echo "###### SUCCESS" 1>&2

 else

echo "###### FAILED" 1>&2

globalerror=$error

 fi

}

CheckFail() {

 error=0

 basename=`echo $1 | sed 's/.*\\///

 s/.mc//'`

 reffile=`echo $1 | sed 's/.mc$//'`

 basedir="`echo $1 | sed 's/\/[^\/]*$//'`/."

 echo -n "$basename..."

 echo 1>&2

 echo "###### Testing $basename" 1>&2

 generatedfiles=""

Again not sure what to do here

generatedfiles="$generatedfiles ${basename}.err ${basename}.diff" &&

RunFail "$MICROC" "<" $1 "2>" "${basename}.err" ">>" $globallog &&

Compare ${basename}.err ${reffile}.err ${basename}.diff

 # Report the status and clean up the generated files

 if [$error -eq 0] ; then

 if [$keep -eq 0] ; then

 rm -f $generatedfiles

 fi

 echo "OK"

 echo "###### SUCCESS" 1>&2

 else

 echo "###### FAILED" 1>&2

 globalerror=$error

 fi

}

while getopts kdpsh c; do

 case $c in

k) # Keep intermediate files

 keep=1

 ;;

h) # Help

 Usage

 ;;

 esac

done

shift `expr $OPTIND - 1`

if [$# -ge 1]

then

 files=$@

else

 files="tests/test-*.blox tests/fail-*.blox"

fi

for file in $files

do

 case $file in

test-)

 Check $file 2>> $globallog

 ;;

fail-)

 CheckFail $file 2>> $globallog

 ;;

*)

 echo "unknown file type $file"

 globalerror=1

 ;;

 esac

done

exit $globalerror

