

Proposal

 ​Yanlin Duan Zhuo Kong Emily Meng Shiyu Qiu
__

 yd2380 zk2202 ewm2136 sq2156

__

 System Architect Tester Language Guru Manager

Motivation
C is a powerful and widely used language. However, sometimes C can be tricky - we’ve all had
our share of headaches with segmentation faults and data races. When deciding the fundamental
goal of our project, we knew that we wanted our language to be easy to use, but still flexible with
a high degree of control over the computer. Most notably, we wanted our language to be safe,
both in terms of memory and concurrency. Thus, we were inspired by Rust, a systems
programming language that prevents segmentation faults and manages data concurrency. We
hope to build our own language that captures the essence of Rust, a “rusty” version of Rust, if
you will. Furthermore, we wanted to incorporate useful, key ideas from other popular languages
such as object-oriented and functional programming concepts. We present Rusty, a safer systems
programming language that combines essential features from Rust with some of the
conveniences of higher level programming languages.

Description
Rusty aims to be a version of the Rust programming language, keeping its key features of safety
in memory and concurrency but shedding some of the other extraneous features to try and retain
the speed of C as much as possible. It can be used as a general purpose programming language
with a focus on helping the programmer avoid many of the common memory safety-related
pitfalls when programming in C, such as segmentation faults or null pointers, as well as
providing useful features often found in higher level programming languages, such as automatic
memory management and pattern matching.

Rusty will automatically clean up the memory associated with variables on both the stack and
heap when the variable goes out of scope. There will only be one binding per variable, so when
memory is moved to a new variable, the old variable is no longer associated with that memory.
Since passing memory back and forth between variables is a pain, Rusty will use a Borrow
feature implemented with references to variables, essentially borrowing ownership of that
memory and will not deallocate after going out of scope. There will be two types of references,
denoted by & and &mut. The former indicates the borrowed memory is immutable, while the
latter allows a user to change the memory. For any given variable, only one of the two types of
reference will be allowed at any time. There can be multiple & references or only one &mut
reference to keep concurrency and avoid data races. In the case of primitives, they will all have a
Copy feature that automatically creates a complete copy of memory for the new variable,
allowing the old variable to keep its value. Copy may be implemented by the user for user
defined types as well.

C is very powerful, but with great power there is great responsibility - Rusty will help
programmers manage some of the intricacies and care needed when using C, so they can spend

more effort on the design of their programs rather than worry about accidentally dereferencing a
null pointer or accessing invalid memory. The days of segmentation faults are over. Target users
include systems programmers and people who have suffered enough while learning the
semantics of C and can fully appreciate the features of Rusty.

Features
- Strong statically typed
- No null referencing pointers
- Automatic memory management
- Borrow feature, immutable and mutable references
- Concurrency, avoid data races
- Functional programming pattern matching
- Lenient keyword matching (eg. “True” and “true” are the same)

Syntax
Primitive Data types

Type Description

 char Basic character, same as in C

 int, double, float Basic numeric primitive types, same as in C

 bool Boolean, value of true or false

 array Fixed size list of elements of same type, immutable

 str String literal

 tuples Finite ordered list

Operators

Operator Name Syntax

Logical operators &&, ||, !

Arithmetic +, -, *, /, %

Bitwise operators &, |, !, ^, <<, >>

Comparison <, <=, ==, !=, >=, >

String concatenation +, “hello” + “world”

Assignment =, let y=x;

Immutable reference (variable borrowed) type& x

Mutable reference (variable borrowed) type mut x when declared
type &mut x when borrowed

Reference (variable borrowing) type* x

Pattern binding @ (ident @ pat)

Ignored pattern binding _

Member access ‘.’ , struct.member

Keywords

Keywords Description Syntax

if/else/else if Conditional expression if(condition)

while/for Conditional/iterative loop while(condition), for(condition)

fn Function fn return_type name (type1 name1, ...)

let Bind value to variable let type name = value;

return Return from function return expr;

struct Structure definition struct name

match Pattern matching let num = match x{
1=>”one”,
2=>”two”,
3=>”three”
_=>”something else”,
};

Code Examples

References
https://doc.rust-lang.org/book/README.html
https://docs.python.org/3/
http://scratch-lang.notimetoplay.org/index.html
http://www1.cs.columbia.edu/~sedwards/classes/2016/4115-spring/proposals/JSJS.pdf
http://www1.cs.columbia.edu/~sedwards/classes/2015/4115-fall/proposals/Dice.pdf
http://www.cs.columbia.edu/~sedwards/classes/2015/4115-fall/proposals/Stitch.pdf

https://doc.rust-lang.org/book/README.html
https://docs.python.org/3/
http://scratch-lang.notimetoplay.org/index.html
http://www1.cs.columbia.edu/~sedwards/classes/2016/4115-spring/proposals/JSJS.pdf
http://www1.cs.columbia.edu/~sedwards/classes/2015/4115-fall/proposals/Dice.pdf
http://www.cs.columbia.edu/~sedwards/classes/2015/4115-fall/proposals/Stitch.pdf

