
easel

	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Manager | Danielle Crosswell | dac2182
Language Guru | Tyrus Cukavac | thc2125

System Architect | Yuan-Chao Chou | yc3211
Tester | Xiaofei Chen | xc2364

	 2	

INTRODUCTION & MOTIVATION
	

To most people mathematics is that pesky subject which you’ll never quite
understand; however, there’s another side to math. Mathematics can be seen as an art
form, like drawing or painting. Using easel, we’d like to do just that. Our ultimate goal of
this language is to create art using math.

Being able to visualize mathematical formulas has multiple uses. The first is
simply to create beautiful images with just a few lines of code. This language also
provides an opportunity to view formulas in forms other than just the normal bar or line
graph. easel will allow its users to visualize sets of data in ways that they haven’t been
viewed before. The user will be able to view their results in a more subjective manner,
bringing creative possibilities to mathematics. easel also will enable the user to take
functions and map them into an output that can be printed in 2D or 3D. Additionally,
easel can be used to provide visualizations of projects such as mapping the internet,
which involves a lot of data so it requires a way of mapping all of the data in an
aesthetically pleasing manner. Finally, easel can be used to create fractals, which can
only be drawn by computers. By combining the ability to draw interesting graphics and
having the computational power of a computer, easel can effectively depict fractals.
	
	
LANGUAGE DESCRIPTION

The primary purpose of our language is to provide programmers a means of
expressing data and functions as visual representations. As a result, the language is
capable of performing both basic and advanced mathematical expressions as simple
operators, without the use of additional libraries (for example, trigonometric and
logarithmic functions). Primitive data types consist of some syntactic sugar to make the
creation of images a central feature of the program. “canvas” and “pix” are data types
representing the drawing canvas and pixel qualities, respectively. Vectors are a unique
data type that can be used to assist in plotting points of data (similar to a graph).
Additionally, because of the nature and role of functions in the creation of
mathematically based images, functions are considered first-class objects. They can be
passed as parameters, returned as values, and declared anonymously in pursuit of those
objectives. In order to allow for robust execution of languages, basic timer functionality
has also been baked into the language, allowing a programmer to define when given
functions should execute.

	 3	

BASIC DATA TYPES

TYPE CONTAINS SYNTAX NOTES
bool boolean value bool VAR = VALUE; value stored as 0 or 1 and can be

represented by "true" or "false"
keywords

int numeric value int VAR = VALUE; can be input using either hex or
decimal notation

float floating point
numeric value

float VAR = VALUE; can be input using decimal
notation

string string value
(array of

characters)

string VAR = STRING- VALUE; generally only used to specify
filepaths

pix numeric value pix VAR =24-BIT-VALUE;
pix VAR [red/green/blue]=8-
BIT-VALUE;

can be input using hex, decimal,
or specialized array notation

PIX DATA TYPE

A pix essentially stores a color value from 0-16777216 (i.e. 6 hex values) in order to
define colors for a specific pixel. pix can use either standard integer/hex notation, or can
be accessed similarly to a map (red being a designated keyword that extrapolates the
value of red from the pixel's overall numerical value). For example:
 pix myPix[red]=#ff
Pixels can be thought of as a combination of char and string types in other languages:
char because each pixel is a single numerical value, string because syntactically the pixel
can be altered one color at a time.

A pixel can be defined by passing it a list of the form {#red, #green, #blue}
Example:
 pix redPix = #ff0000;
 pix redPix2 = 16711680;
 pix redPix3 = {255, 0, 0};
 pix redPix4[red] = 255; /* This would set the pixel to have a maximum red value.
 Green and blue would automatically be set to 0 and the
 pixel integer value would equal #ff0000 */

	 4	

COMPOUND DATA TYPES

TYPE CONTAINS SYNTAX NOTES
array a collection of

primitive elements
PRIMITIVE_TYPE
VAR[ITEMS];

each element within the array
must be defined separately

matrix a collection of
arrays

PRIMITIVE_TYPE VAR
[ITEMS][ITEMS]

tuple a collection of
elements

PRIMITIVE TYPE VAR =
{ITEM_1,ITEM_2, ..
.,ITEM_N};

items can be added or removed
from tuples using special
function

canvas syntactic sugar;
essentially a

matrix of pixels.

canvas VAR
[SIZE_X][SIZE_Y];

both rows and columns of a
canvas element are 2x+1 of the
user provided size and begin
from -SIZE to +SIZE (to
approximate a cartesian graph
with a center index of (0,0))

vector syntactic sugar; a
2-tuple with

ordered pairs of
coordinates

vec VAR = {{0,1},{1,2}}; two-tuples can be passed as
values as well as constants.

Negative indexing is allowed to access array and matrix elements, by counting from the
tail. For example, given an array a of size 10, a[-8] is equivalent to a[10 - 8] or a[2].

Lists, arrays, matrices, and canvases have the property “size” which indicates the length
of the list/sublist/array/matrix.
Example: canvas c[10][20]; canvas[2].size = 20

MATHEMATICAL OPERATORS

OPERATOR MEANING UNARY SYNTAX

+ Addition ++ int a = 5+5;
- Subtraction -- int a = 5-5;
/ Division // int a = 5/5;
* Multiplicati

on
** int a = 5*5;

% Modulus %% int a=5%5;
^ Exponentiati

on
^^ int a=5^5;

~ Sine float a=~5;
~~ Cosine float a=~~5;
@ Tangent float a=@5;
| Logarithm float a=5|5; /* base 5, log 5 */

float b=|5; /* defaults to base 10 */
$ Root float a=3$64; /* cube root of 64 */

float b=$16; /*defaults to square root */

	 5	

OTHER OPERATORS

OPERATOR MEANING

= assigns a value to a variable
< less than
> greater than

== equivalent
<= less than or equal to
>= greater than or equal to
!= not equivalent to

&& logical AND
|| logical OR
! NOT
. access operator (accesses value of KEY in OBJECT.KEY)

/* ... */ commenting

CONTROL FLOW

SYNTAX MEANING
if (EXPR) {STATEMENT}
else {STATEMENT2}

if EXPR evaluates to true execute
STATEMENT otherwise evaluate
STATEMENT2

for (STATEMENT1; EXPRESSION; STATEMENT2) {
STATEMENT3;}

repeat STATEMENT3 until
EXPRESSION evaluates to false

do { STATEMENT; } while (EXPRESSION); repeat STATEMENT until
EXPRESSION evaluates to false

while (EXPRESSION) { STATEMENT; } repeat STATEMENT until
EXPRESSION evaluates to false

FUNCTIONS

The basic grouping of statements in easel - every body of code is considered a function.
Functions can be passed as arguments to other functions and can be called recursively.

function RETURN_TYPE NAME(PARAM1, PARAM2) {
 STATEMENTS
}

Functions as a parameter:
call(PARAM1, function RETURN_TYPE(PARAM1, ... , PARAMN) {STATEMENTS})

Functions as a return value:
function RETURN_TYPE FUNCTION1 (VAR) {
 return function RETURN_TYPE (PARAMS){ STATEMENT WITH VAR; }
}

	 6	

SPECIAL FUNCTIONS

Function Call Description Notes
void draw(int x, int y) draws a given

canvas to the
screen

can only be called by canvas elements;
integers represent the top corner of the
image;
non-blocking function - the canvas will
remain of the screen as following
statements execute

void drawout (int overwrite_time,
string file_path)

saves file to
given filepath

can only be called by canvas elements;
if the gif file already exists and integer
is 0 or higher, the function will draw
the canvas as an additional frame into
the gif, placed at the time period of the
given int

canvas view (string file_path) scans in a given
gif file and
returns a canvas
element

void graph (function black)

void graph (function shape,
function color)

void graph (function red, function
green, function blue)

overloaded
function graphs
a given function
onto a canvas

can be called by canvas elements;
accepts up to 3 functions as arguments
as well as an int value representing the
axis to map the function to;
default color to map to is black, can
specify with other functions the colors
of each pixel

void execInterval (int t, function f) function that
executes a given
function over an
interval t

integer value represents an integer in
milliseconds;
allows for basic animation

void execAfter (int t, function f) function that
executes a given
function after a
period of time t

integer value represents a time period
in milliseconds

	 7	

SAMPLE CODE

Draws the Mandelbrot set displayed on the cover page:

