

TAPE: A File Handling Language

Project Proposal

Tianhua Fang (tf2377)
Alexander Sato (as4628)

Priscilla Wang (pyw2102)
Edwin Chan (cc3919)

Programming Languages and Translators
COMSW 4115 Fall 2016

Sept 28, 2016

Introduction
Motivations

Understanding user data has become increasingly important. To improve their products

and services, many companies analyze behaviors and interaction in user data. There are already

several tools created for the purpose of data manipulation. For example, Excel is used for storing

and retrieving numerical data and SQL is used to communicate with a database of data.

However, one thing that is missing is an easy and universal way for users to perform file

operations. Each language has their own way of opening, closing, reading, and writing a file,

which can be confusing for program developers. Our team aims to develop a programming

language that simplifies the process for file operations.

Description

TAPE is a language that allows users to read, write, and manipulate documents easily. By

developing this language, we are responding to the shortcomings of the built-in Java functions

which handle files. In particular, there are redundancies within existing Java functions which we

believe can be consolidated to ease user interface. For example, existing Java functions allow

users to read in a file by using buffer stream I/O, stream I/O, or channel I/O; this redundancy can

confuse users unfamiliar with Java. Instead, we want to consolidate these functions into one

“read” function in TAPE. Furthermore, if a programmer opens and changes a file in a Java

program and does not close the file properly in the program, the file does not actually get

modified. This is another problem that our team wants to resolve- we want to simplify the

process of file manipulation. In short, TAPE is a language designed to rework existing

deficiencies and optimize user ease.

Additionally, we want users of TAPE to be able to work with all languages. File

manipulation is handled differently in various languages. C’s input and output is drastically

different from Javas. By using TAPE, the user can just allow it to translate between the two

different languages. The user will have the option to personally define certain basic I/O behavior

in a separate file. By defining these once, the user no longer has to worry about translation

issues. Afterall, when editing a file source, it shouldn’t matter what language you do it in.

Whether it’s code, a database of numbers, or a story, data is data. How this is done differs

slightly from platform to platform, and TAPE aims to simplify that process.

Language Features

Comments

Characters Description

/* */ Comments

Data Types

Keyword Description

int 32 bit integer

float 64 bit float

char character

word text value
string literals type word

bool boolean value

void null value

file file

phrase string of characters ending with newline

scope string that in a pair of {}, () scope

after after index, pointer, or other keywords like sentence

before before index, pointer, or other keywords like sentence

Built-In Functions

Type Method and Description

*file open(file name)
Opens a file.

void close(file name)
Closes a file.

phrase readline(file name, int begin, int end)
Reads a file and stores the data in a buffer. Begin and end are optional parameters. If
begin is given, it will start reading that many bytes into the file. If end is given, it will
stop reading that many bytes into the file. Returns phrase with all newlines omitted and
on inserted at the end.

void write(location)[inserted text]
Writes inserted text into a set location. Location must use before or after keyword, and
then some buffer, either word, phrase, or a C-style string. When writing, the default
behavior for before: newline entered after the inserted text. The default behavior for
after: newline inserted first, then the inserted text.
If the location does not exist, an exception is thrown.

file merge(file name1, file name2, string newfile, string path)
Returns a file with a merged version of two files called newfile. The path is an optional
parameter. If it is not specified, it creates the file at the current directory. Otherwise, it
creates the file at the specified location. If path doesn’t exist, it throws an exception.

file split(location, string newfile)
Returns a file created from the original file that is split at the location of some word,
phrase, or string literal. A new file is created with the second parameter as its name.

*char scan(string buffer, char *location)
Searches for buffer in file, starting at a given location. Location of 0 would start the
search at the beginning of the file. Returns the address of the location of the first letter
of the string if it is found. Otherwise, returns null.

void rm(file name)
Deletes the file.

void delete(word text)
Deletes text in the file.

file copy(file name)
Returns a copy of the file into the same path with “copy of” added to the beginning of
the new file.

int count(word target)
Returns the number of times that target appears in file .

void replace(word search_keyword, word new_keyword)
Finds all instances of search_keyword and replace them with new_keyword .

Operators

+ - * / can be used for mathematical purposes. But in addition to the mathematical functions,
TAPE allows these operations to do the following things:

Operation Type Description

+ int,
float,
string

+ can be used between two strings for concatenation. This operator
will be able to accomplish smart promotions of data types.

1) When adding int and a float, the int will be upgraded.
2) When adding a string with an int, the int will be upgraded

into a string.

+ file + merges two files. (ie. file1 + file2 will return file3,
which is a merged file of file1 and file2)

* * * is a C-style pointer. When * is immediately preceded by a data
type, the compiler will know that it is a pointer.

/ file / checks whether two files are different. Returns a file that indicates
the similarities and differences between the two files.

== bool == checks whether two files are the the same. Returns true if the
two files match character by character, returns false otherwise.

Loops and Conditionals

a. If-else conditions
if (<condition>) {

<statements>
} else if {

<statements>
} else {

<statements>
}

b. For loop
for (int i = 0; i < 10; i++) {

<statement>
}

c. While loop
int j = 10;
while (i < j) {

i++;
}

Example Code

Combining Two Files
/*Program to combine two file with same programming language into a single file

called combinedfile */

file original = open(C:/somepath.py);

file target = open(C:/somepath.py);

file result = merge(original, target, “newfile”, “C:/user/..”);

Merge and Move
/* let nginx log was saved as every 5 minute, we want to merge all of the log

for Sep28th into a single log file, move the rest to a backup folder. */

merge(“log_20160928*”, “\n” “C:/nginx/log..”, “C://output/path/..”);

move(“log_20160928*”, “C:/nginx/log...”, “C:/logbak...”);

Print All the Location with the Name “class”
/* open the file, then count how many time the word appear then print out the
location of the word in the file */
file target = open(C:/user/test.java);
A = target.count(“class”);
char *ptr=0;
for(int i=0;i<a; i++){

ptr = scan(target, “class”, ptr);
print(&ptr);

}

Writing Text to a File
/* open the file first. Then insert the text*/
file target = open(C:/user/test.java);
word myWord = “hello”;
write (after myWord)[“world”];

