
StockX
Jesse Van Marter jjv2121

Ravinarayanan Lakshmanan rl2857
Ricardo Martinez rmm2222

Sophie Lucy sjl2185

Introduction

The financial industry has been a perfect space for the use of programming languages because
of the heavy reliance on mathematical calculation and accuracy involved in gaining successful
returns. Technology has allowed people to be more precise in their trades and experimental in
their strategies. Thanks to the amount of historical as well as real time stock market data
publically available, there are infinite possibilities to the application of a financial programming
language. By using such resources, we intend to build a language that can be used by beginner
investors and extended to experienced individuals.

Language Description
StockX is a financial based language intended to give users an easy, abstract way to test and
execute trading strategies. The language will feature an “account” data type which can hold
money, risk preferences, portfolios, and the ability to make trades. “Portfolio” is another StockX
specific datatype that will contain a collection of stocks, details of when they were bought and
sold and can also have portfolio specific risk preferences.. “Stock” datatypes will be able to be
filled with technical and fundamental information about a specific stock. This will allow users the
option of using stocks historical data to backtest strategies or to keep track of trades in ‘real
time’. “Order” types will be executed by an account on a specific stock into a portfolio the
account owns. This, combined with risk preferences on the account and portfolio levels, will
allow users to manage capital at an account level while still keeping track of the performance
and returns of each portfolio. StockX is meant to have the ability to be leveraged realtime
account tracking and execution (letting users have a transparent view of what strategies are
working for them and at the same time assuring them their risk preferences are followed on an
account and portfolio level) and also be used to optimize strategies and risk preferences on
historical data.

Syntax

Comments -

/* Comment */
// This is a single line comment
/* Multi-line comments
 can be written
 like this */

Operators -

 Assignment = += -= *= /=

 Arithmetic + - * / % ++ --

 Relational == != <> <= >=

 Conditional and or not

Primitive Types -

 int i = 100;

 float y = 100.00;

 string s = “StockX”;

 array arr = [“StockX”, “is”, “a”, “financial”, “language”];

 Financial data structures

 A variable of type stock the has the properties associated with a stock.

stock stk = SYMBOL;

 A variable of type portfolio, a collection of stocks and information of the

orders associated with the portfolio
portfolio port = PORTFOLIO;

 A variable of type order which contains the details of the order being placed by

the account holder. E.g.: Buy, Sell etc.
order ord = ORDER;

 A variable of type account that holds user information and portfolios

account acc = ACCOUNT;

Functions -

function fun(arguments) returns (datatype)
{
 //The definition goes here
};

Code Sample -

The following is a code snippet that matches two orders accordingly performs the buy or
sell between two account holders.

/*
 buyTWTR - An order placed by user U1 to buy 100 shares of Twitter
 sellTWTR - An order placed by user U2 to sell 100 shares of Twitter
*/

function matchOrders(order buyTWTR, order sellTWTR) returns(boolean)
{

/*

Check the quantity property of the orders to see if they

match (in this case, 100)
 */
 If[buyTWTR.quantity == sellTWTR.quantity]
 {
 //Fulfill the orders and update the quantity
 buyTWTR.quantity = buy(TWTR, buyTWTR.quantity);
 sellTWTR.quantity = sell(TWTR, sellTWTR.quantity);
 };
 return true;
};

Function main() returns()
{
 orderStatus = matchOrders(buyTWTR, sellTWTR);
 if(orderStatus)
 Return 0;
};

In the above sample code snippet, buy() and sell() are functions that accept a variable of

type stock and the quantity being traded between the two account holders.

