

PROGRAMMING LANGUAGES AND TRANSLATORS
Language Proposal

ShapeShifter

By Stephanie Burgos, Ishan Guru, Rashida Kamal, Eszter Offertaler, and Rajiv Jude

Thamburaj

Domain: Programmatic Geometry Modelling
Ultimate goal : Be able to cleanly and programmatically define complicated shapes by
performing a series of operations on simple primitive shapes.

TEAM

Manager: Ishan Guru ig2333
Language Gurus: Eszter Offertaler, Rashida Kamal eo2309, rsk2161
System Architect: Rajiv Jude Thamburaj rjt2132
Tester: Stephanie Burgos sb3539

LANGUAGE DESCRIPTION

ShapeShifter is a programming language designed to make geometric shape manipulations as
sexy as it sounds. Instead of having to muck about with meshes and vertex connectivity
information, people can use ShapeShifter to create and display three dimensional shapes like
spheres and cubes simply by providing their names. ShapeShifter allows these primitives to be
modified and combined through a series of transformations with all of the actual implementation
and underlying mesh representation abstracted away. Functions and control flow is included to
allow programmatic and recursive modelling.

Instead of worrying about inputting the correct functions or areas, displaying three dimensional
shapes, such as spheres, cubes, cones, or any manipulation is as simple as providing the name
of a shape and its origin coordinates. ShapeShifter then allows for these primitives to be
modified and combined to through a series of transformations, with options to define loops and
functions for programmatic modelling.

It is important to note that ShapeShifter does not support an interactive GUI for shape
modifications, such as CAD, but rather relies on user programming the visual manipulations
they intend to make. It does, however, support an interactive display that allows users to view
their generated shapes. The display supports basic viewing actions like zoom, rotate, etc. but
does not make any changes to the actual shape. While this does rather limit the usefulness of
ShapeShifter for users who would like to make heavier use of the GUI, the intention is not to
replace GUI-based CAD systems, but to provide a programmatic alternative. It is useful in cases

where a scene may consist of many well-defined but tedious operations, e.g. stacking
thousands of spheres.

The display for ShapeShifter is based on a minimalistic OpenGL output that places the elements
of the scene onto a “grid” environment and allows for simple camera movement. The view can
be zoomed, translated, and rotated. There is also an option for basic animation: the displayed
scene can rotate on its own to allow for viewing from all angles without direct user manipulation.

The user is insulated from the underlying mesh-based representation of each geometric
primitive. ShapeShifter will be wrapped around an appropriate Constructive Solid Geometry
library like CGAL or OpenCSG that will handle the brunt of the mesh operations, like 1 2

intersection or union.

PARTS OF THE LANGUAGE

Each program defines a “scene” that contain the “shapes” that are comprised of “primitives” that
undergo a series of “operations”.

Basic Data types

- int: an integer data type
- double: a double-precision floating point data type
- vec3d: a vector of 3 doubles, with named, accessible fields x,y,z.
- vec3i: a vector of 3 integers, with named, accessible fields x,y,z
- String: C++ style string
- C-style arrays
- Point: this data structure represents an actual vertex in the underlying mesh

representation of the shape, and contains position information. Used to capture a notion
of geometric vertices.

Scene
Each program defines a scene. The syntax is:
Scene {

...
}
It acts similarly to a main() function in other languages. The expressions in the curly braces of
Scene are sequentially performed when the program is run. The Scene itself can be displayed,
but mostly it acts as an abstract environment - with a world coordinate system - for shapes to
exist in.

1 http://www.cgal.org/
2 http://opencsg.org/

Shapes and Primitives
Shapes are the predominant data type. They include primitives, which comprise the most basic
SHAPE types and are the only things that can be initialized directly, and the results of
operations on shapes.
Users can query primitive-specific information on shapes that have not been modified by
topology-altering operations. Generic shapes only provide position and orientation information.
The position is measured at the center of the bounding box of an arbitrary shape. The
orientation is initialized somewhat arbitrarily, but tracked over the course of rotation operations.

Common properties of arbitrary shapes
Property name type description

position vec3d (x,y,z) coordinates of the center
orientation vec3d (x,y,z) offset in degrees from world’s coordinate system

SPHERE:
radius double radius, only accessible under uniform scale

CUBE:
width double width of the de facto rectangular prism
height double height
length double length
vertices Point[8] the vertices of the cube

CYLINDER:
radius double radius of the face
height double height

CONE:
radius double radius of the base
height double height
vertex Point the point of the cone

TETRAHEDRON:
length double length of the sides
vertices Point[4] the vertices of the cube

These can be accessed by shapeName.propertyName, e.g.

SHAPE ball = SPHERE;
ball.radius -> returns a double equal to 1.0

These properties can not be changed by the user, only queried.

Operations
Operations broadly do one of two things: they perform transformations on a SHAPE, or cause
topological changes to the underlying mesh, resulting in the creation of a new SHAPE object
(the inputs are not modified).
Initialization:
SHAPEs are initialized by writing the name of a primitive shape. The following code creates a
new SHAPE of type sphere unit size at the scene origin:

SHAPE shapeName = SPHERE; // Or CUBE or one of the other primitives

The following operations modify the state of the SHAPE parameter.
- Rotate(SHAPE s, double x, double y, double z)

Rotates the SHAPE about its center (not the world center), inputs are in degrees. x
corresponds to the amount of CCW rotation around the x axis, y around the y axis, etc.

- Translate(SHAPE s, double x, double y, double z)
Translates the SHAPE by x along the world’s x axis, by y along the y axis. etc.

- Scale(SHAPE s, double x, double y, double z)
Scales the SHAPE by x along its own x axis, by y along its own y axis, etc.

- Reflect(SHAPE s, double a, double b, double c)
This reflects the SHAPE across the plane defined by ax + by + cz = 0, in world
coordinates.

The following operations make topological changes and result in a new SHAPE.

- Union(SHAPE s1, SHAPE s2)
Returns a new SHAPE that is the geometric union of the two shapes

- Intersect(SHAPE s1, SHAPE s2)
Returns a new SHAPE that is the intersection of the two shapes

- Difference(SHAPE s1, SHAPE s2)
Returns a new SHAPE that is the result of subtracting s2 from s1

- Copy(SHAPE s1)
This returns an exact copy of s1, makes no change to the input SHAPE

And there are a few general operations

- Write(SHAPE s)
Dumps s to a general format file (probably .PLY)

- Print(String msg)
Dumps msg to a log file.

Flow control
while loops, if/elif/else statements are supported in the language. All expressions must be
surrounded by {}. !=, ==, <=, >=, <, > are supported in the if conditional.

Functions
The function keyword can be used to define a function, and rec is used to indicate that it is
meant to be used recursively. Parameters are not passed by reference, so use them wisely.
They can be used to avoid writing a lot of repetitive code, or to segment the creation of a
complicated shape into less complicated subcomponents. E.g. when creating a model of a
chessboard, you can have a function createPawn() return a pawn SHAPE and call it multiply
times. Recursive functions are allowed, and are encouraged for the creation of fractals. It may
be necessary to add more information queryable for primitives to fully take advantage of fractal
behavior.

SAMPLE CODE
Sample program 1: Create a snowman from simple shapes and display it.
Resulting image (not an exact representation of the output)

/* This function returns a SHAPE that comprises the snowman’s body */
SHAPE function makeBody()
{

SHAPE base = SPHERE; // Initialize a unit sphere rotate at the origin
Scale(base, 4, 4, 4); // Scale base by 4 in all coordinates
Translate(base, 0, 2, 0); // Translate base so that it sits on top of the xz plane
SHAPE middle = SPHERE;
Scale(middle, 2, 2, 2);
Translate(middle, 0, 5, 0); // Translate middle so that it sits on top of the base
SHAPE head = SPHERE;
Translate(head, 0, 6.5, 0); // Place head on top of the middle segment
SHAPE body = Union(base, middle);
body = Union(body, head);
return body;

}

SHAPE function makeHat(double y)
{

SHAPE brim = CYLINDER;
Scale(brim, 1.5. .01, 1.5);

Translate(brim, 0.0, y, 0.0);
SHAPE top = CYLINDER;
Scale(top, .8, 1, .8);
Translate(top, 0.0, y+.01, 0.0);
return Union(top, brim);

}

Scene {

SHAPE body = makeBody();

// Add the arms
SHAPE larm = CYLINDER; // Unit cylinder oriented along y axis
Scale(larm, .05, 2, .01);
Rotate(larm, 0, 0, -60); // Rotate 60 degrees CW around z axis
Translate(larm, 1, 5, 0);
SHAPE rarm = Copy(larm);
Reflect(rarm, 1, 0, 0); // Reflect across the yz plane
body = Union(body, larm);
body = Union(body, rarm);

// Add the face
SHAPE reye = SPHERE;
Scale(reye, .05, .05, .05);
SHAPE nose = Copy(reye);
Translate(reye, .3, 6.5, .45);
SHAPE leye = Copy(reye);
Reflect(leye, 1, 0, 0);
Translate(nose, 0, 6.3, .48);
body = Union(body, nose);
body = Union(body, reye);
body = Union(body, leye);

SHAPE hat = makeHat(6.9);
body = Union(body, hat);

Display(hat);

}

