

PhysEx
A scripting language for fast prototyping and minimal effort physics engine development.

Joshua Nuez (​jn2548)
David Pu (sp3396)

Steven ​Ulahannan (su2206)
Justin Pugliese (jp3571)

September 2016

Introduction:

A physics engine is a useful simulation tool to observe behaviors of physical systems.
They allow observation of patterns which can assist in making future predictions.
Unfortunately, traditional languages are not optimized for these types of applications.
PhysEx is designed for fast prototyping and reduced complexity of applications which
utilize a physics based environment.

PhysEx natively supports environment and object simulation, and can incorporate
libraries that support different branches of physics such as kinematics, thermodynamics,
and electromagnetism. Native objects are able to calculate and update their state and
position at continuous time intervals. Objects are also independent of most variables, but
can be manipulated through functions, such as Predictor and Simulator.

Language Design:

The two main components of a physics engine are the environment and the objects,
called blobs, which exist within the environment. We call them blobs because we would
like to distinguish it from objects, since we try to stray away from object-oriented
programming and we don’t intend to have hierarchical structures of objects. In our
language, we translate the two components into two layers of abstractions. Environment
describes the interactions (physical forces) among the blobs and each blob contains all
the parameters sufficient to describe its state, such as mass, energy, position, velocity,
temperature, etc.

In general, most applications will begin with the creation of an environment and its
attributes. Once an environment is defined, objects can be added to it and their behavior
can be observed and further manipulated. For example, if an environment similar to
Earth was being created a gravity attribute could be defined. Then objects, such as an
apple, could be created with its own attributes like mass or vertical position. As the
simulation progresses the environment will exert forces on the contained objects at
specific time intervals, which will update the state of the objects. The simulator will
display the current state of the objects and environment on the terminal.

Data Types:

The native data types which create the foundation of PhysEx are:

char string int bool float
array

Similar to C/C++

environment Defines the conditions that containing blobs will be
influenced by

blob Set of attributes which define a physical body that lives
within an environment

Variables do not have to be defined during declaration, instead the compiler will detect
type during runtime.

Arithmetic Operators:

Integer Operators = + - * / ** %

Float Point
Operators

+. -. *. /. **.

Similar to comparators, arithmetic operations can only be done on objects of the same
data types.

Logic Operators:

PhysEx supports most of the same comparators as many other languages and it ensures
that data types are consistent between the objects being compared.

Comparators == != < > <= >=

Boolean Operators || && not

Control Flow:

 Syntax

if, else​ statement if ​condition ​ {
 ...
} else if ​condition ​ {
 …
} else {
 …
}

while​ loop while ​condition ​ {
 …
}

for ​ loop for (​counter; condition; increment​) {
 …
}

Native Functions:

Simulator Monitors and manipulates the environment and objects which make up
an experiment

Predictor Takes in (object, length of time, helper function) as parameters and
returns a new object with a different state. The helper function would
come from libraries that are appropriate for the calculation you want.
For example, if you want make predictions about a free fall object, then
import the kinematics library and pass in the free fall equation function
as a helper function; for thermo, pass in thermo equations as helper
functions.

Roles:

Role Name

Manager Joshua Nuez

Language Guru Justin Pugliese

System Architect David Pu

Tester Steven Ulahannan

Sample Program:

Empty sample program that creates a vacuum which is void of objects.

let env = Env.default; // Default: Vacuum
let blobs = []; // Default: Empty array of blobs
let time = 10; // length of simulation in seconds
let delta = 1; // Incremental change of time in the Simulation

Simulator(env, blobs);
Simulator.start(time);

Gravity (Object in Free Fall on Planet Earth)

import printl from print;

function earth(blobs) {

let g = ­9.81;
let deltaT = Env.deltaT;
for(let i = 0; i < blobs.length; i++) {

let newVelocity = blobs[i].v +. g *. deltaT;
let velocity = (newVelocity +. blobs[i].v) /. 2;
blobs[i].v = newVelocity;
blobs[i].y = blobs[i].y +. velocity *. deltaT +. 0.5 *. g *.

deltaT **. 2;
}

}

let blob apple = {

mass: 15,
y: 0,
v: 0

};

let env = Env(earth);
let fruits = [apple];
let time = 10;
let delta = 0.1;

Simulator(env, fruits, delta);
Simulator.start(time);

printl(blobs);

