

MAZE - Multiple Adventure Zone Environments

(“Get lost in our language” - MAZE developers)

Project Proposal

Alexander Brown (aab2212), Alexander Freemantle (asf2161),
Michelle Navarro (mn2614), Lindsay Schiminske (ls3245)

September 28th, 2016

Describe the language that you plan to implement. Explain what sorts of

programs are meant to be written in your language Explain the parts of your

language and what they do Include the source code for an interesting program in

your language 2–4 pages

Language description:

MAZE allows game designers to create text-based games. The core building
blocks of MAZE are cells. Cell style map design allows for game designers to enforce
movement rules. Players can move around a string of cells like a board game or players
can move in a more free-form style jumping from cell to cell. Game ending conditions
can be enforced by the players movement or other factors like health, score or a time
limit. Depending on the type of game the developer creates, each cell is able to contain
an item.

What sort of programs are meant to be written?

Everything from a board game to an adventure style game can be written in
MAZE. The types include player, cell, item and objective. Our language will include
predefined cell style types (ie. Board Style) but it will also allow for designers to spec
their own cell layout.

Parts of the language:

//this is a comment
Primitives ​:

Type Definition Example

int signed integers -1, 0, 5

boolean boolean values true, false

string set of characters “MAZE is awesome”

char single character ‘m’ ‘a’ ‘z’ ‘e’

Keywords:

Keyword Description

If, else Control flow statements

while Loop statements

extends for subclass definitions
Operators:

Operator Description

+, - Addition,Subtraction

*, /, % Multiplication, Division, Mod

== , != Equivalence

>, <, >=,
<=

Inequality Operators

&&, ||, ! Logical AND, OR, NOT

Built-in Classes:

Class Description Fields Interface

World There can only be
one world per
game.

Holds lists of
players, items,
cells.

size

int ​ The number of cells
in the world

playerList

dict ​ The names of the
players in the world.
The key is the player
name

itemList

dict ​ Items in the world.
The key is the item
name

cellList

dict ​ Cells with their
names as keys

listen()

Listens for user
actions & changes
game state appro

isEmpty()

Returns true if all
cells are empty

isEmpty(name)

Returns true if a
specific cell is
empty

isFull()

Returns true if all
cells contain an item

timeLimit

int ​ in minutes, (if 0 the
time limit is not
enforced)

actionList

dict ​ Actions available
for players. Default
actions are the built-in
directions (south, north
etc.)

insert(Cell)

Add a cell to the
world

remove(Cell)

Removes cell

winGame()

Triggers the end of
the game, displays
win message

loseGame()

Triggers the end of
the game, displays
lose message

Class Description Fields Interface

Cell An object that
holds items

name

string ​ The name of the
cell

itemList

Item ​ The contents of the
cell

south​, ​north​,
west ​,
east​,
sw​, ​se ​,
nw​, ​ne
Links between cells (these
are bi-directional)

insertItem(Item)

Insert Item into
cell

Class Description Fields Interface

Item Any object inside
of of a cell or
belonging to a
player

name

string ​ The name of the
item

toString()

Returns the name
of the item

Class Description Fields Interface

Player An actor in the
game

name

string ​ The name of the
player

currCell

Cell ​ The player’s current
cell

hasWon

boolean​ True if the player
has won

ItemList

List of items that the
player has

toString()

Returns the name
of the player

giveItem()

Add item to the
player’s itemList

hasWon()

returns true if the
player wins

Class Description Fields Interface

Action Choice the player
is able to make

name

The name of the action
toString()

Returns the name
of the action

1 ​Sample Code:
 2 ​//Simple maze game
 3
 4 ​Class mazePlayer extends Player {
 5 ​ boolean hasWon(Cell winCell) {
 6 ​ return currCell == winCell;
 7 ​ }
 8 ​}
 9
 10 ​createPlayers {
 11 ​ mazePlayer = mazePlayer(name: “Mandella”);
 12 ​ mazePlayer.hasWon(maze.centralPark);
 13 ​}
 14

 15 ​createMaze {
 16 ​ maze = World();
 17 ​ maze.actionList = [“north”, “south”, “east”, “west”]
 18 ​ fuzzyRoom = Cell(msg:”Welcome to the fuzzy room. Which way to Columbia?”);
 19 ​ lowSteps = Cell(msg:“Good work, you have made it to the steps. \
 20 ​ This game is a walk in the park”);
 21 ​ centralPark = Cell(msg:”Congratulations! You made it to the park. Enjoy the sun.”);
 22 ​ fieryPit = Cell(msg:“Whoops, you chose the wrong path and you died. RIP”);
 23
 24 ​ //define the starting point
 25 ​ maze.startRoom = fuzzyRoom;
 26 ​ maze.winCell = centralPark;
 27 ​ maze.loseCell = fieryPit;
 28
 29 ​ //describe path
 30 ​ fuzzyRoom.east(“lowsteps”);
 31 ​ lowsteps.south(“centralPark”);
 32 ​}
 33
 34
 35 ​play {
 36 ​ //user must end the game
 37 ​ createMaze();
 38 ​ createPlayers();
 39
 40 ​ //start game
 41 ​ currCell = startCell;
 42
 43 ​ while (mazePlayer.currCell != centralPark && mazePlayer.currCell != fieryPit){
 44 ​ print(currCell.msg);
 45 ​ listen();
 46 ​ }
 47
 48 ​if(currCell == centralPark){
 49 ​ winGame();
 50 ​}
 51 ​else{
 52 ​ loseGame();
 53 ​}
 54

