
LaTenS: A Tensor Manipulation Language

Daniel Schwartz
Manager
ds3263

Eliana Ward-Lev
Language Guru

erw2138

Mohit Rajpal
System Architect

mr3522

Elsbeth Turcan
Tester
ect2150

September 28th, 2016

1 Introduction

1.1 Background

Tensors are a generalization of vectors or matrices to higher dimensions. A zeroth order tensor is a scalar,
a first order tensor is a vector, a second order tensor is a matrix and so on.

T c
ab is the notation for a tensor named T with 2 down indices and one up index. The latex notation,

T abˆc, notation is used to name our variables below.

1.2 Motivation

The name LaTenS is a combination of LaTeX, a typesetting language, and the word “tensor”, the mathemat-
ical object that will be at the core of our language. Our motivation in writing LaTenS is to generalize tensor
calculations and make them easier and more efficient for scientists studying fields such as general relativity,
which make extensive use of tensors. As such, it can be expected that tensors will be primitives and their no-
tation will reflect the current standard in LaTeX. Additionally, all basic tensor operations will be easy to use.
It is further expected that users will write libraries to implement the standard functions utilized in their fields.

Note: While there are currently languages built for matrix mathematics (ex: Python w/ Numpy), and
even languages that enable tensor mathematics (ex: MATLAB), to the best of our knowledge, there are no
languages that treat them as primitives.

2 Syntax and Features

2.1 Types

LaTenS is an untyped language. We support three types of declarations, however: an nth-order tensor in
which the elements are a generic “numeric” type (that is, floating point), a scalar (which is really just a
0th-order tensor), or a string. Any variable can be evaluated as a boolean.

Name Description Example Declaration

Tensor
nth-order tensor; use to define
lower indices and ˆ to define upper
indices

T mn = [[1, 0], [0, 1]];

Scalar Special shorthand for a scalar a = 5.5;

String A string str = "String Text";

Note that a scalar can be declared with this special shorthand, but it will be stored and manipulated as a
0-dimensional tensor.
Any tensor or string can be evaluated as a boolean value. A tensor with all values set to 0, or the empty
string, are considered false for the purposes of boolean logic; all other values are considered to be true.

1

2.2 Operators

LaTenS will support several useful built-in operations on tensors. (Strings are primarily meant for printing
information, and therefore we support only string concatenation as an operation on strings.) Whitespace is
naturally ignored when evaluating expressions, so spaces are allowed between terms. Relational operators
apply mainly to scalars (that is, we will need to verify that the operands are 0th-order tensors and not strings
or other tensors), while the quality operators can be applied to any operands.

2.2.1 Binary Operators

Operator Description Example
+ tensor addition T a+T b, T a + T b

− tensor subtraction T a−T b, T a − T b

* tensor product T a*Tˆa, T a * Tˆa

strcat(String1, String2) string concatenation strcat("Hello ", "world")

< scalar less than a<b, a < b

<= scalar less than or equal to a<=b, a <= b

> scalar greater than a>b, a > b

>= scalar greater than or equal to a>=b, a >= b

== equal to a==b, a == b

˜= not equal to a˜=b, a ˜= b

Note that tensor division is properly defined as multiplication by the inverse, and so is not supported as a
basic operator.

2.2.2 Unary Operators and Standard Functions

Operator Description Example

Inv(Tensor) inverse Inv(Tˆa)

raise(Tensor, Index),

lower(Tensor, Index)
promote or demote index n

raise(T a,a),

lower(T aˆmn, m)

dim(Tensor) get dimensions of tensor dim(T a)

dim(Tensor, Index) get size of a particular dimension dim(T mn, m).

, ˆ get element by indices T 00

2.3 Control Flow

LaTenS supports basic control flow such if–then–else and for loops.

2.3.1 if–then–else

If–then–else is an expression that returns void, but executes only one branch. An if–then–else expression
must be of the following format.

if (expr) {

expr1_True

expr2_True

...

}

else {

expr1_False

expr2_False

...

}

2

As it is obvious by the syntax, expr is evaluated. If expr is a tensor of one or more dimensions, it is assumed
to be True. If expr is a 0 dimensional tensor [a scalar] and is equal to −0 or +0 in IEEE 754 Floating Point
representation, expr evaluates to False. Likewise, if expr is a string and is the empty string, expr evaluates
to False. Otherwise expr evalutes to True. If expr is type void then it evaluates to False.

2.3.2 Loops

For succinctness only for loops are supported in C99 style. The return type for for loops is void.

for(beginexpr; evalexpr; iterexpr)

{

expr1_Loop

expr2_Loop

...

}

The evaluation of a for loop begins with executing beginexpr. The loop body execution begins with checking
evalexpr is True in the same style as if–then–else expression. The expressions inside the loop body are
executed in sequence. Afterwards the iterexpr is evaluated and executed.

2.3.3 Functions

LaTenS supports simple functions with return statements.

functionName(varname1, varname2 ... varnamen)

{

expr1_Fun

expr2_Fun

...

return exprm_Fun

}

Latens does no compile time checks on argument types or return types. A function may take or return any
expression. It is the caller’s and callee’s responsibility to ensure the semantics fo functions.

2.4 Comments

Comments are parsed in a regular expression format. LaTenS supports single line comments

% Single Line Comment

and block comments over multiple lines

%{ Block Comment %}

Nested comments are not supported.

2.5 Features and Design Decisions

LaTenS allocates memory on demand. Users do not need to worry about memory management. For the
sake of simplicity, LaTenS does minimum allocation on stack. The stack is used for LaTenS internals, and
all objects exist on the heap. This saves complexity as the LaTenS compiler does not need to determine
whether an object should be statically or dynamically allocated.
LaTenS lacks exoctic features such as recursion, type checking, and automatic garbage collection. Memory
is automatically allocated, but LaTenS follows the Ostrich philosophy. The ostrich sticks its head in the
sand at the first sign of danger. Just so, LaTenS leaks memory like the Titanic takes on water.

3

Pointers and references are not allowed in LaTenS. The authors of the LaTenS language believe in strict gun
control and do not wish the users of LaTenS to shoot themselves in the foot.
LaTenS does minimal safety checks during compile time, all errors and issues are reported to the programmer
during runtime. This saves effort by not attempting to prove invariants regarding the code.

3 Sample Program

In General Relativity, problems often involve tensors. A simple problem is determining if a four-vector is
space-like or time-like. This would involve multiplying two one-dimensional tensors and one two-dimensional
tensor. In LaTenS this would take the form

g_mn = [[1, 0, 0, 0],

[0, -1, 0, 0],

[0, 0, -1, 0],

[0, 0, 0, -1]]

%{g now is the Minkowski metric which defines space-time in flat space. g is a global variable

which can be used but not changed.}%

squared(u^a, name) {

print(name);

return u*u*g;

}

isSpaceLike(ip, name) {

print(name);

if(ip > 0){

print(" is space-like");}

else if(ip = 0){

print(" is light-like");}

else { %ip < 0

print(" is time-like");}

}

}

main() {

u^a = [5, 1, 1, 0];

isSpaceLike(squared(u, "u"));

v^a = [1, 1, 1, 1];

isSpaceLike(squared(v, "v"));

isSpaceLike(squared(u+v, "u+v");

}

The program would print

u is space-like

v is time-like

u+v is space-like

4

