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Motivation 
Inspired by the parallelism between genetic code and computer code, we would like to provide a                
platform to “code” genes easily and natively. We are implementing basic models of molecular              
biology in light of heightened interest in understanding genetics and its potential impact on              
tailoring medicine, understanding diseases and ultimately improving human life. We are           
designing DNA# for both the novice user, who is interested in learning the basics of genetic                
code, and the advanced researcher performing analyses on large data sequences. We would             
like to rethink genetic code as a form of data representation itself, and provide coders a platform                 
to tinker with genes and clearly see the biological results without hours of laborious manual               
transcription, complement finding, and referencing external resources. In sum, we would like to             
create a language for programmers to code in the genetic language and learn synthetic biology,               
and for synthetic biologists with limited programming experience to open source and optimize             
their work.  
 
Summary of goals 

● Provide basic, intermediate and advanced genetic operations that estimate physical          
properties and mimic real genetic processes, including but not limited to transcription            
(DNA->RNA) and translation (RNA-> codons)  

● Support primitive and complex data structures that can handle simple base sequences to             
full blown genetic maps 

● Provide means to allow scientists to add physical properties (e.g. bond strength,            
annealing temperature)  to existing data structures (nucleotide, codon, amino acid, etc.) 

● Allow users to input and output files commonly used to store genetic data (e.g. FASTA)               
and convert data from such files into mutable native data structures  

● Allow users to build higher level algorithms (mentioned below) to model molecular            
biology and calculate optimal sub-sequences in DNA to perform operations such as            
designing primers for polymerase chain reaction (PCR), a basic genetic tool  

 
Language design/description 
This programming language is inspired by Biopython, a Python library providing data structures             
and methods for dealing directly with DNA processes. However, our language is a more              
general, stripped down version of Biopython that does offer native methods for file parsing, but               
allows for such features to be built into the language. The basic data unit of our language is the                   
nucleotide, and the language provides data structures for higher levels of genetic modelling             



(e.g. DNA sequence, amino acid) composed of the fundamental nucleotide unit. Our language             
also provides methods for basic file I/O, and a method to interface with several types of files                 
wherein genetic data is often stored.  
 
Primitive Operations and Higher Level Algorithms 
Below are some basic operations we envision our language supporting and some useful higher 
level algorithm examples that can be designed using our language.  
 
Low level (Natively supported)  

○ Converting between data types, such as DNA to RNA, RNA to DNA 
○ Equality and comparison 
○ Finding complementary sequences (e.g. (ATTG -> TAAC)) 
○ Slicing a DNA/RNA/Peptide sequence 
○ Concatenation and appending sequences 
○ Transcription 
○ Associating physical properties with data (e.g. melting point of each sequence) 
○ File Input/Output 

 
Several high level algorithms can be built using our language and are useful in molecular 
biology, for example: 
 

● Primer prediction: One of the most common molecular biology processes is           
polymerase chain reaction (PCR) which is used to amplify DNA molecules. In order to do               
this, a process called primer design is required, which selects a sub-sequence of DNA to               
“start” the amplification reaction. Selecting this subsequence can be laborious, as it            
requires calculating factors such as annealing temperature (a physical property          
depending on the nucleotide sequence), and the GC content (the % of G and C               
nucleotides in the sub-sequence). Since this information is supported by DNA# data            
structures and DNA# allows for easy processing of DNA sequences, an algorithm can be              
written in DNA# to find the optimal primer subsequence. 

● Sequence Alignment Calculator: A common algorithm studied in the field of           
bioinformatics is the calculation of alignment between two DNA sequences. This is not a              
straightforward task as random insertion or deletion of nucleotides can throw off            
comparison algorithms that compare the sequences base by base. Better sequence           
alignment algorithms can be written in DNA# using its native data structures. 

● Mutation Simulator: Random mutations are an inherent part of any DNA operation and             
can take the form of insertion, deletion or substitution of a nucleotide. These mutations              
must be accounted for when performing any molecular biology processes. Thus, a library             
could be built using our language and the supported nucleotide codes that represent             
variability to encode for mutations, as well as determine whether these mutations are             
silent (result in the same codon) or have an effect on the final peptide sequence.  

 
Data types/Data structures 



DNAs will be represented in an array of nucleotides depending on what operations will be               
required to maximize efficiency. Although DNA contains 2 strands, it is sufficient to store the               
information in 1 array as the second array is complementary to the first. RNA can be                
represented in a single array of nucleotides. The data structures will accept particularly the              
following base inputs: A,T,C,G,U. Nucleotides A,C,T,G are used for DNA while A,U,G,C            
constitute RNA. Additionally, we will support nucleotides K, M, R, Y, S, W, B, V, H, D, X, N                   
which are actually nucleotide codes used in the FASTA format which stand for variable bases               
(for example, M stands for a variable nucleotide that can be either A or C due to mutation). Like                   
nucleotides, nucleotides also have their own complements. The list of all nucleotides, nucleotide             
codes and their complements is provided in Figure 1.  
 

Codons will contain 3 RNA bases and will be used to translate RNA into peptides. Hence,                
peptides will be represented as linked lists of amino acids. This way, we can use our data                 
structures to represent different stages of the DNA to protein process The data structures will               
check for the validity of input. The data structures corresponding to nucleotides, DNA, etc. will               
also carry data about their physical properties, such as bond strength, to relate the data types to                 
the physical DNA molecule, allowing for computational models to be built using our language. A               
complete representation of the DNA to peptide process using the data structures of DNA# is               
shown in Figure 2.  
 

 



 
 
 

● Standard types 
 

Type Definition Values 

bool Boolean true, false 

int Integer integers 

double Double Floating Point real numbers 

void Valueless no values 

 
● Primitive 

 

Type  Definition Values 

Bases Individual Nucleotides 
 

A, T, G, C, U 

Variable Bases Variable Nucleotides K, M, R, Y, S, W, B, V, 
H, D, X, N 

 
● Complex 

 



Type Definition/Value Sample Values 

DNA A Sequence of A,T, G, 
C Deoxynucleotides 

AGTXWRCC 

RNA A Sequence of A, U, G, 
C Nucleotides 

AGUCC 

Codon A three-nucleotide RNA 
sequence specifying a 
single amino acid 

UGU, CGA, ACC, e.t.c 

Amino Acid Basic chemical 
structures composing a 
protein 

Ala, Trp, Cys, e.t.c 

 
 
Syntax 
 

● Lexical Conventions 
Similar to C++, identifiers in DNA# can be any string of letters, digits, and underscores, 
however, not beginning with a digit.  
 
Below is a list of reserved words: 

  

true false if else 

elseif for while continue 

break include end local 

then return     

        

  
● Expressions 

Expression list 
 

Arithmetic 

+ - * / 

% ^     

Relational 



<  <= == >= 

!=       

Logical 

or | not ! 

and &     

String Operation 

concatenate complement transcribe   translate 

        

  
● Expression Precedence 

^ 
not 
* / % 
+ - 
.. 
< <= == >= > == 
and 
or 
  

● Data and Data Structures 
 As a strongly-typed language, all expressions have to be defined and initialized before 
use. 

  
● Statements 

● Basic Traits 
 Each line is considered a single statement, no need for ‘;’ as in C or C++ 

No parentheses in control structure such as ‘if’ ,‘for’, etc. Language would look 
more natural and concise. 

  
● Assignment 

 a=a+1 
 b=”DNA”..”Sequence” 
Allow multiple assignment: 
 a,b=b,a –swap ‘a’ and ‘b’ 

  
● Control Structure 

  
 



if statement 

if cond==true then 
  … 
end 

 when there is more than one condition to be decided, we have elseif: 

if cond1==true then 
  … 
elseif cond2==true then 
  … 
else 
  … 
end 

  
 for statement 

for i=start_num,end_num,step_length do 
  … 
end 

  
 while statement 

while cond==true do 
  … 
end 

  
● Functions 

Same as functions in C or C++, all functions have explicit return type and input table, 
which may look like 

return_type function_name(input_a_type A,input_b_type B) 
… 

end 

 Local function 

local return_type function_name(input_a_type A,input_b_type B) 
… 

end 

  
● File Modules 

Use ‘include’ command to include other files,eg: 
 



Include ‘Data.lang’ 

 
  
 
Sample programs 
 

● Program 1: 
Think of the following scenario: A biologist gets a random DNA segment from his DNA               
sequencing machine and he is really interested in knowing whether this random segment             
contains a sequence which could be transcribed into an intact mRNA (in this scenario an               
intact mRNA means an RNA sequence containing start codon and end codon).            
Furthermore, it is important to know what kind of peptide this mRNA will produce.  
As a language specifically designed for molecular biology computations, DNA# is           
implemented to handle operations as shown in the chart below. The chart shows the              
whole genetic transcription to peptides. SegA is the random DNA segment (in the real              
world the segment could be very long and complicated, this is just a simple example of                
it). 
 

 
 

 



File BioExpData.dat 

<sample1> 
TCCCCAATGAAGGGTGCTTAGTAC 
<\sample1> 
 

 
  

File DNA2Protein.dnas 

include “io.dnas”  
include “basicBio.dnas” 
 
DNA SampleA; 
DNA SampleB'; 
 
SampleA = import_dna("BioExpData.dat",sample1) 
(*SampleA = TCCCCAATGAAGGGTGCTTAGTAC*) 
 
SampleB = complement(sampleA)  
(*SampleB = AGGGGTTACTTCCCACGAATCATG*) 
 
list<codon> mRNA 
transcribe(SampleA, mRNA)  
 (*mRNA = UCC-CCA-AUG(s)-AAG-GGU-GCU-UAG(e)-UAC*) 
 
i = findStartCodon(mRNA) 
j = findEndCodon(mRNA) 
mRNA=rnaCutOut(mRNA,i,j) 
(* i=3 
 * j=7 
 * mRna=AUG(s)-AAG-GGU-GCU-UAG(e)  *) 
 
list<amino_acid> PeptideA 
translate(list_mRNA, PeptideA) 
 
print("Below is the result:\n") 
print_list(PeptideA) 

 
 

 Running Result 



Below is the result: 
 (origin) 

->methionine 
            ->lysine 
            ->glycine 
            ->alanine 

->(terminal) 

 
 
 

● Program 2: 
Now we perform the following scenario. A geneticist downloads a DNA sequence with 
some variable regions (such as N, B, etc.) and desires to know what all the possible 
peptide sequences could result from the sequence 

 
DNA: TAC-AAK-GGN-CTB-CAT-ATT 
RNA: AUG(s)-UUM-CCN-GAV-GUA-UAA(t) 

 

File DNA2Protein.dnas 

include “io.dnas”  
include “basicBio.dnas” 
 
DNA DnaSeg 
DnaSeg=DNA(“TAC-AAK-GGN-CTB-CAT-ATT”) 
 
list<codon> mRNA 
transcribe(DnaSeg, mRNA)  
 (*mRNA =AUG(s)-UUM-CCN-GAV-GUA-UAA(t)*) 
 
list<list<amino_acid>> AllPossiblePeptide 
translateFasta(list_mRNA, PeptideA) 
 
print("All possiblities:\n") 
 
 
from AllPossiblePeptide.begin to AllPossiblePeptide.end 
        print(AllPossiblePeptide.current) 
end  
 

 



 

 Running Result 

All possibilities: 
#1: methionine-phenylalanine-proline-aspartic-valine-(terminal) 
#2: methionine-phenylalanine-proline-glutamic-valine-(terminal) 
#3: methionine-leucine -proline-aspartic-valine-(terminal) 
#4: methionine-leucine -proline-glutamic-valine-(terminal) 
 
 

 
 
 
 
 
 
 
 


