

COMS 4115 Programming Translator and Translator

An Easy Graph Language

Manager: Jia Zhang jz2784

System Architect: Haikuo Liu hl3023

Language Guru: Zehao Song zs2324
Tester: Qing Lan ql2282

 2

Table of Contents
1.	 Introduction	..	3	

2.	 Language	Features	...	4	
Simple	Graph	Syntax	...	4	
Universal	Graph	Language	..	4	
Flexible	Data	Structure	...	4	
Easy	Graph	Rendering	...	4	

3.	 Language	Design	and	Syntax	..	4	
Storage	of	Node	&	Graph	..	4	
Comments	..	5	
Keywords	...	5	
Operator	...	6	
Built-in	functions	..	7	
Basic	Usage	...	10	

Define	a	new	Node	...	10	
Define	a	new	Graph	..	11	

4.	 Code	Examples	...	13	
Linked	List	..	13	

 3

1. Introduction

Graph is an important data structure in computer science and have a variety of application in the
real world. But current computer language is not convenient to define and present. In most
case, you need to define a set of vertexes and edges in order to define a graph, which is not
straightforward and sometimes annoying.

To facilitate the use of graph, we create an language called Circline. Circline has easier syntax
for describing a graph. For example, to create a graph with three nodes (a, b, c), where a is root
node and link with node b and c. We could easily define it like:

node a = node(); node b = node(); node c = node(); graph gh = a -- [b, c];

In above example, we first define three nodes and then link them using the symbol “--”, which
defines edges linking node a and node b, c. As you can see, Circline use special syntax like “--”
to define the edge, which is more straightforward and convenient.

Circline support directed and undirected graph with edge value, graph merging and other graph
related operations. Using Circline, you can easily create graph and do some manipulation with
graphs like building a binary tree and performing traversal.

The last but not the least, Circline support plotting graph. Whenever you create a graph, you
could plot it using the simple “plot” function. Using the plotting function, you could visualize your
complicated graph data structure in a more simple way.

 4

2. Language Features

Simple Graph Syntax
Using Circline, most of simple graph (directed or undirected graph, edge with or without values)
could be created by a single statement. Combining several simple graphs could generate a
complicated graph.

Universal Graph Language
Many graphs are composed of nodes and lines, such as tree and linked list, and Circline
provides a more concise way to present graphs by taking advantage of this. Circline is able to
define all kinds of graphs with its data structure and draw them with lines and nodes. The
language will adjust the graphs’ location and size with its built-in algorithms.

Flexible Data Structure
The Core Node function accept multiple data types (int/float, string, boolean …). Once
defining/adding nodes in graph, the data type of different node could also be different. This
feature will provide user to design more complicated functional graph. Such as Decision Tree or
State Machine.

Easy Graph Rendering
Circline is capable of plotting graph. By using the “plot” function, user could draw their graphs in
an easy manner. Circline will handle the graph detail like the distance between nodes and lines
automatically and draw the graph using OpenGL.

3. Language Design and Syntax

Storage of Node & Graph
Nodes are stored in a global node pool in memory.
Graphs just keep the reference to each node and stored the information of edges. Thus, if two
graphs share the same node, modify the value of the node in one graph would result in the
change in another graph.
There is no edge type, since everything regarding the edges could be retrieved by graph-node
pair.
Any operation on graphs would generate a new graph.

 5

Comments

Syntax Comment Style

/*
Multiline comments
*/

Multiline comment

// Single line comment

Keywords

Key word Definition

int Defines an integer, which has ...bit.

float float represents a float number, which has ...bit.

bool To define a boolean expression is correct (true) or wrong (false), for true or
false only.

string string keyword is used to represent a sequence of characters, it’s included
in “”.

node node is used to define a point in the graph, it could be linked to other
nodes or graph, and could be assigned any kinds of type value.

graph graph is a set of linked nodes, it’s like a component in the union-find
problem, which means that two unlinked graph can’t be represented by
one graph without operation.

If else Used as if(boolean expression) {/*if statement*/} else {/*else statement*/}:
Same as if else statement in java.

for Used as for (initialization; termination;increment) {/*for statement*/}, same
as for statement in java.

continue Continue to the next loop in for loop.

break break from a for loop when the control flow encounters the break.

map Defines a list of key-value pairs, the key should be unique. The value of
key or value could be any type, but types of same map should be same.
map aMap = {name: “circle”, value: 1};

 6

list Defines a list of value, which could be any type.
list aList = [1, 2, “my type”, {name: ‘circline’}];

null null could be applied to node and graph, it means a non-existing node or
an empty graph.
Example Use:
graph gh = node(1) -> null; // Create a graph with single node.

void Primary type, means the value havn’t been assigned.

print Print the result value

plot Plot the Graph

Operator

Name Operator Node, Node Node, Graph Graph, Graph

MERGE + / Update the
node in graph

Merge

ASSIGN = Define a New
Node

/ Define a new Graph

LINK -- Node -- Node =>
Graph

Node -- Root
=> Graph

/

LINKR -> Node -> Node =>
Graph

Node -> Root
=> Graph

/

LINKL <- Node Left Left
Link to Node

Right

Node <- Root
=> Graph

/

Name Operator Int/Float String List Map

PLUS + Adding value
from value

Contact two
string

Connect the
former tail to the

latter head

/

MINUS - Subtract value
from value

/ / /

MULTIPLY * Multiply two / / /

 7

value

DIVIDE / Value divided
value

/- / /

ASSIGN = Substitute the
right value to the

left

Assign the
right value to

the left

Assign an empty
list or with some

value

Assign a
new map
variable

AND & bool bool bool bool

OR || bool bool bool bool

NOT ! bool bool bool bool

EQUAL == Compare the
value

Compare the
string

/ /

GT > Compare the
value

/ / /

LT < Compare the
value

/ / /

GE >= Compare the
value

/ / /

LE <= Compare the
value

/ / /

Built-in functions
T refers to any type.

API of list (list aL = [])

Function Name Function Signature Description

add aL.add(T p1)=>list Add p1 to the list

get aL.get(int index)=>T Get existing value from index

remove aL.remove(int index) Remove the value from index

size aL.size() => int Return the length

concat aL.concat(list p1)=>list Combine two lists, the same as (list + list)

set aL.set(T p1, int index) Update the value at given index

isEmpty aL.isEmpty() => bool The same as aL.size() == 0

 8

API of map (map aM = {})

Function Name Function Signature Description

add aM.add(T k, T v)=>map Add (k, v) key-value pair into the map.

get aM.get(T key)=>T value Get existing value from key

remove aM.remove(T key) Remove the key-value pair

contains aM.contains(T key)
=>boolean

Detect if the key pair exist in the map

size aM.size() => integer Get the size of the map (Number of
valid key-value pair)

isEmpty aM.isEmpty() => bool The same as aM.size() == 0

API of node (list aN = node(T))

Function Name Function Signature Description

get aN.get()=>T Return the data stored in node

set aN.set(T) => node Update the data stored in node

link aN.link(node n1, string
edge_type, T value) =>
graph

Link two nodes together by <edge_type> with
a edge value of <value>.

The root of the graph is always aN.

aN.link(n1, “--”, value); =>
aN -- n1(value);

aN.link(n2, “->”, value); =>
aN -> n1(value);

aN.link(n2, “<-”, value); =>
aN <- n1(value);

 9

API of graph(list aG = node(1) -> node(2))

Function Name Function Signature Description

merge aG.merge(graph
g)=>graph

Merge two graph together and return a new
graph, the root of the new graph is aG’s root.
If there are conflicts between two graphs,
replace the old graph’s nodes or edges with
the new graph.

aG.merge(g); =>
aG + g;

link aG.link(node n1, string
edge_type, T
edge_value[, node n2])
=> graph

Link the node n1 with the graph aG by
connecting n1 & n2 by <edge_type> with
value.

The root of the graph remains unchanged.

If n2 is defined yet not existed in aG, throw an
error. If n2 is not defined, use Graph.root as
default.

aG.link(n1, “->”, 2); =>
aG(2) + n1 -> aG.getRoot()(2);

aG.link(n1, “<-”, 2, n2); =>
aG + n1 <- n2(2);

getRoot aG.getRoot() => node Get the root node.

setRoot aG.setRoot(node n) =>
graph

Set the root as the node n in the graph. If n is
not existed in the graph, throw an error.

contains aG.contains(node n) =>
boolean

Check whether node n is in the graph.

aG.contains(node n1,
node n2[, string
edge_type]) => boolean

Check whether edge n1 <edge_type> n2
exists in the graph aG. If edge_type is not
given, all of “--”, “->” and “<-” are valid.

edge aG.edge(node n1, node
n2) => map

Return the edge between n1 & n2.

Example:
1. Single Directed Edge
aG = n1 -> n2(“haha”);
aG.edge(n1, n2); =>
{ “->”: “haha”}

2. Double Directed Edge

 10

aG = n1->n2(“aa”) + n1<-n2(“bb”);
aG.edge(n1, n2); =>
{“->”: “aa”, “<-”: “bb”}

3. Undirected Edge
aG = n1 -- n2(“haha”); =>
{“--”: “haha”}

remove aG.remove(node n) =>
graph

Remove node n and it’s connecting bonds

size aG.size()=> integer Get the number of the nodes in graph

succ aG.succ(node n)=> list Return the successors of node n. The return
value is a list of map, which contains two key-
value pairs:
{
 node: <a reference to node>,
 edge: <data stored at the edge>
}
Example:
aG = a -> [b(0), c(1)] + a<-[d(2)];
aG.succ(a); =>
[{ node: b, edge: 0 },
 { node: c, edge: 1 }]

dfs aG.dfs(node n) => list Return a list of node reference, following the
order of depth first search started at node n.

bfs aG.bfs(node n) => list Return a list of node reference, following the
order of breadth first search started at node
n.

tpsort aG.tpsort(node n) => list Topological Sort of graph started at node n.
Return a list of node reference.

Basic Usage

Define a new Node

node a = node(<node value>)

To retrieve the node value, use a.get()

<node value> : int, float, bool, string, list or map

 11

Example Retrieved Value

node a = node(1); a.get() => 1

node a = node(2.9); a.get() => 2.9

node a = node(“Jobs”); a.get() => “Jobs”

node a = node(true); a.get() => true

node a = node({ name: “Circline”,
description: “Powerful Language”});

a.get() =>
{ name: “Circline”, description: “Powerful Language”}

Define a new Graph

Define graphs with edge values:
graph gh = node <link type> [<node or graph>]

Define graphs without edge values:
graph gh = node <link type> [<node or graph> (<edge value>), …]

Create graphs via Graph Merging
graph gh = <graph> + <graph>

<link type> : --, -> or <-
<edge value> : int, float, bool, string, list or map

Example Graph

graph gh = a -- b -- c -- [a,d,e];

/*
Define undirected graph without edge
value.
*/

 12

graph g =
 a -- b(0) -- c(2) -- [a(1), d(3), e(4)];

/*
Define undirected graph with edge
value
*/

graph gh =
 a -> b -> [c -> b, d];

/*
Define a simple directed graph, which
could be defined by a single
statement.
*/

graph gh =
 a -> b(0) -> c(2) -> a(1) +
 d -> c(3) -> b(4) +
 e -> c(4);

/*
Define a complicated directed graph
with edge values, which cannot be
defined by a single statement, through
graph merging.
*/

graph linkedlist =
 a -> b -> c -> d -> e;

/*
Define a linked list
*/

 13

bool l = true;
bool r = false;

graph btree =
a -- [b(l) -- [d(l), e(r) -- f(l)],
 c(r) -- [h(l) -- g(r), i(r)]];

/*
Define a binary tree
Since the edge of BST has direction,
assign a direction value for each
edge.
*/

4. Code Examples

Linked List

Generate a linked list:

// Recursive Version
graph function fibonacci(int n, int prev) {
 if (n > 100) return null;
 return node(n) -> fibonacci(n+prev, n);
}
graph gh = fibonacci(1, 1);

// Iterative Version
graph gh = node(1) -> null;
node prev = gh.getRoot();
for (int n = 2; n <= 100;) {
 node curr = node(n);

 14

 gh = gh + prev -> curr;
 n = n + prev.get();
 prev = curr;
}

Generate a binary search tree: [5, 2, 1, 3, 8, 89]

// Directly Define
bool l = true;
bool r = false;
graph bst = node(5) -> [node(2)(l) -> [node(1)(l), node(3)(r)],
 node(8)(r) -> node(89)(r)]

// Though BST Insertion Algorithm
bool LEFT = true;
bool RIGHT = false;

// Get Left & Right Node helper functions
node getEdge(graph bst, node root, bool direction) {
 list succs = bst.succ(root);
 int i = 0;
 for (; i < succs.size(); i = i + 1) {
 map curr = succs.get(i);
 if (curr.get(‘edge’) ==direction) return curr.get(‘node’);
 }
 return null;
}

node getLeft(graph bst, node root) {
 return getEdge(bst, root, LEFT);
}
node getRight(graph bst, node root) {
 return getEdge(bst, root, RIGHT);
}

// BST Insertion Algorithm

 15

void insert(graph bst, node root, node n) {
 if (root == null) return void;

 node left = getLeft(bst, root);
 node right = getRight(bst, root);

 if (n.get() <= root.get()) {
 if (left == null) return bst.link(n, “<-”, LEFT, root);
 return insert(bst, left, n);
 } else {
 if (right == null) return bst.link(n, “<-”, RIGHT, root);
 return insert(bst, right, n);
 }
}

// Generate the Tree
list source = [5, 2, 1, 3, 8, 89];
graph bst = node(source.get(0)) -> null;
int i = 1;
for (; i < source.size(); i = i+1) {
 insert(graph, graph.getRoot(), node(source.get(i)));
}

