
CMAT Language - Project Proposal 
COMS 4115 

 
Language Guru: Michael Berkowitz (meb2235) 

Project Manager: Frank Cabada (fc2452) 
System Architect: Marissa Ojeda (mgo2111) 

Tester: Daniel Rojas (dhr2119) 
 
 
1. Introduction and Motivation 
Our team’s shared interest in mathematics led us to decide on creating a language 
centered around matrix manipulation. Matrices are widely used to represent data and 
mathematical equations in many academic fields ranging from robotics to linear algebra. 
Our language, CMAT, aims to make matrix manipulations and other such linear algebra 
operations easier for applications. CMAT is inspired by C and MATLAB, taking the best 
parts of both to produce a language with high versatility.  
 
Ideally, we want to allow easy, efficient computation and matrix operations without 
sacrificing the structure of a full programming language. Some other potential 
applications of our language include finding eigenvalues and eigenvectors, finding the 
inverse of a matrix, performing linear transformations on vectors, and solving numerical 
methods. 
 
2. CMAT Program Types 
As our introduction hinted, the types of programs we are targeting with this language 
are similar to those best written in MATLAB. The main ones that come to mind are 
programs related to linear algebra problems which involve working extensively with 
matrices. We want to make it simple for users to solve these problems with CMAT while 
also allowing them to create more complex programs with the basic tools we provide. 
CMAT could also be used for programs to plot statistical data if paired with a proper 
graphical interface package that could take advantage of our matrix structure. In 
addition, the simplicity of CMAT will not restrict users to specific mathematical problems 
but instead will allow them to also solve diverse problems as they would in other 
languages such as C or Java. 
 
 
 
 
 



3. Language Overview 
 

Primitive Data Types 

          Name                               Description  

int Integer 

char  Character  

bool True and False 

float  32-bit floating point number  

double 64-bit floating point number 

null Absence of data  

void Used for functions that do not return 
anything 

 
Supported Data Types 

          Name                               Description  

String An array of chars 

[] Define a matrix 
 

Basic Keywords 

          Name                               Description  

for Iteration until condition not met 

while Loops until condition is not met 

if Dynamic if accepts 1/0/True/False/null 

else Paired with an ‘if’ statement 

/* */ Block comments 

// Single line comments 

main First function executed in a program 

return Returns a value of a function 



Operators  

          Name                               Description 

= Assignment operator 

+, - , *, / Arithmetic operators 

++ Increment operator 

-- Decrement operator 

> Greater than operator 

< Less than operator 

>= Greater than or equal to operator 

<= Less than or equal to operator 

== Returns 1 if values are equal, else 
returns 0 

!= Returns 0 if values are equal, else 
returns 1 

&& Logical AND operator 

|| Logical OR operator 

! Logical NOT operator 
 

Matrix Operators 

          Name                               Description  

+, - , *, / Matrix arithmetic operations and 
scalar arithmetic operations 

[x:y:z] Make a 1-by-n matrix from x to z with 
a delimiter of y 

[x,:]  Access specific row of a matrix 

[:,y] Access specific column of matrix 

<,<=,>,>= If 2 matrices have the same 
dimensions, these operators compare 
element by element 



4.) Examples and Sample Program 
//Variable declaration 
int x = 1; 
char letter = ‘A’; 
bool flag = false; 
 
//Matrix declaration for 3x3 matrix literal 
Matrix m = [1 2 3; 4 5 6; 7 8 9] 

 
//Create matrix 
Matrix x = [1 : 2 : 10]; // x = [1 3 5 7 9] 
Matrix Test = [1 2 3; 4 5 6; 7 8 9]; 
Test[0,:]; //Access row 0 (first row) 
Test[:,2]; //Access column 2 
 
Example Determinant Function: 
 
int determinant(int squ_mat[]) 
{ 
    int sum = 0; 
    int rows = r_size(squ_mat);  
    int cols = c_size(squ_mat); 
  
    // check that squ_mat is an n x n matrix with n > 0 
    if(rows != cols || rows == 0 || cols == 0) return -1; 
    // Base case 
    if(rows == 1) return squ_mat[0,0]; 
    // Recursion 
    else 
    { 
        for int i = 0:(r_size(squ_mat)-1) { 
            sum += parity*m[0,i]*determinant(rm_c(i, rm_r(0,m))); 
            parity = (-1)*parity; 
        } 
        return sum; 
    } 
} 
 
void main(){ 

print(determinant([ 1 2 ; 3 4 ])); // -2 
} 


