

Language Reference Manual

 Yanlin Duan Zhuo Kong Emily Meng Shiyu Qiu
__

 yd2380 zk2202 ewm2136 sq2156

__

 System Architect Tester Language Guru Manager

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

Table of Contents
Introduction

Lexical Conventions

Types

Operators

Statements and Expressions

Memory and Safety

Thread Concurrency Safety

Grammar

References

1

1. Introduction
rusty is a condensed version of the Rust programming language, based on C. rusty retains
Rust’s key features of memory safety and thread concurrency safety. rusty can be used as a
general purpose programming language, but is intended to be a safer systems programming
language. rusty uses the LLVM as a compiler IR, aligning with the goal of keeping rusty as a
fast, but flexible language.

Introduction

2

2. Lexical Conventions

2a. Tokens

There are five classes of tokens: identifiers, keywords, literals, operators, and separators.

White space such as blanks, tabs, and newlines are ignored. However, there are cases
where they are required to separate tokens.

let whitespace = [' ' '\t' '\r']
let newline = '\n'

Comments, denoted as beginning with the characters /* and terminating with the
characters */ , are also ignored. They do not nest and cannot appear within literals.

and comment = parse
 newline { incr lineno; comment lexbuf }
 | "*/" { decr depth; if !depth > 0 then comment lexbuf else token lexbuf }
 | "/*" { incr depth; comment lexbuf }
 | _ { comment lexbuf }

and comment2 = parse
 newline {token lexbuf}
 | _ {comment lexbuf}

2b. Identifiers

Identifiers are sequences of mainly letters and digits, but usage of the underscore is allowed.
Upper and lowercase letters are considered to be distinct. The first character of an identifier
cannot be a number. An identifier cannot be the same as an existing keyword.

let alpha = ['a'-'z' 'A'-'Z']
let digit = ['0'-'9']
let id = alpha (alpha | digit | '_')*

2c. Keywords

Keywords are specific identifiers reserved for use by the language and may not be used
otherwise.

Lexical Conventions

3

bool
break
char
const
continue
else
false
float
for
if
int
let
in
mut
return
static
string
struct
true
tuple
void
while
thread
spawn
join
send
sync
mutex
and
or
not
loop
fn
impl (struct methods)
as (type cast)

2d. Literals

Literals are sequences of characters, whose valid character sets vary depending on type of
use. The literals are:

Integer
Float
Boolean
Character
String

Integer literals are sequences of digits representing only whole number values in decimal.

Lexical Conventions

4

let digit = ['0'-'9']
let int = digit+

Float literals include an integer part, a decimal point, a fraction part, an optional e or E with
integer exponent. The integer part, fraction part, and integer exponent are both sequences
of digits. Either the integer or the fraction part may be missing, but not both.

Float literals are 32 bits.

let float = (digit+) ['.'] digit+

Boolean literals are one of two valid sequences of characters, true or false.

"true" { TRUE }
| "false" { FALSE }

Character literals are single character sequences surrounded by single quotes. Special
characters are represented with an escape sequence of a single backslash and a character.

 '\'' - single quote

 '\"' - double quote

let ascii = ([' '-'!' '#'-'[' ']'-'~'])
let char = ''' (ascii | digit) '''
let escape = '\\' ['\\' ''' '"' 'n' 'r' 't']
let escape_char = ''' (escape) '''

String literals are sequences of characters surrounded by double quotes. The valid character
set includes anything that can be represented by a character literal.

let string = '"' ((ascii | escape)* as s) '"'

2e. Operators

Operators are specific lexical elements reserved for use by the language and may not be
used otherwise. Refer to the Expressions section for functionality and use cases.

Arithmetic: + - * / %
Assignment: =
Equivalence: == != < <= > >=
Logical: and, or, not

Lexical Conventions

5

Reference: & mut &mut *

2f. Separators

Separators are specific lexical elements reserved for use by the language and may not be
used otherwise. They are responsible for denoting the separation between tokens. White
space is considered a separator.

() { } [] ; : , .

Lexical Conventions

6

3. Types

3a. Primitive Data Types

int

The integer type stores whole number values in 32 bits.

let x : int =32;

float

The float type stores fractional number values in 32 bits.

let y: float = 0.4;

bool

The bool type represents either true or false.

let y: bool = false;

void

The void type represents an empty value used only as the type returned by functions that do
not generate values. It cannot be used as a variable type.

fn print_num(x: int)-> void {
 println!(“{}”, x);
}

char

The char type represents a single character surrounded by single quotes stored in 8 bits.

let x: char ='x';

string

The string type represents a sequence of characters either as a literal constant or as some
kind of variable, they are always valid UTF-8, and usually seen in its borrowed form &string.

Types

7

let hello: string = "Hello, world!";

3b. Non-Primitive Data Types

array

The array type represents a fixed-size array, denoted <type> <array name> [<size>] in
declaration and <type> <array name> = [elements] in definition.

Syntax:

let array1: [int;4] = [1,2,3,4];
println!("{}",array1[0]);

Grammar:

LBRACK typ SEMI INT_LITERAL RBRACK {ArrayT($2,$4)} /* array type */
LBRACK expr_list RBRACK { ArrayLit(List.rev $2) } /* array creation */
expr LBRACK expr RBRACK { ArrayTupleAccess($1,$3) } /* array access */

tuple

The tuple type represents a finite heterogeneous sequence.

Syntax:

let tuple: (string,int,char) = ("hello", 5, 'c');

Grammar:

LPAREN func_input_opt RPAREN {TupleT(List.rev $2)} /* tuple type */
LPAREN RPAREN { TupleLit([]) } /* empty tuple or unit */
LPAREN tuple_list RPAREN { TupleLit(List.rev $2) } /* tuple creation */
expr LBRACK expr RBRACK { ArrayTupleAccess($1,$3) } /* tuple access */

struct

The struct type is a single, unified data type that combines variables with names of these
variables as field labels.

Syntax:

Types

8

struct Point {
 x: int,
 y: int,
}

fn main()-> void {
 let origin: Point = { x: 0, y: 0 };
 println!("The origin is at {}, {}", origin.x, origin.y);
}

Grammar:

ID { StructT($1) } /* struct type */
STRUCT ID LBRACE formals_opt RBRACE { StructDef($2,$4) } /* struct definition */
ID LBRACE struct_list_opt RBRACE { StructCreate($1,$3) } /* struct creation */
expr DOT ID { StructAccess($1,$3) } /* access struct */

3c. Type Qualifiers

const

The const qualifier indicates that the value of the variable will not be changed.

Syntax:

let const a:int =32;
a = 64;// error:left-hand of expression not valid

Grammar:

 CONST ID COLON typ ASSIGN expr { Constant(($4,$2),$6)}

mut

The mut qualifier indicates that the value of the variable is mutable, meaning its value and
memory can be borrowed by another variable.

Syntax:

let mut x: int = 5;
x = 6; // mutable x allows changing x’s contents
let y: &mut int = &mut x; // y is referencing/borrowing x’s resource and can change x’
s contents

Types

9

Grammar:

MUTABLEBORROW typ { SliceT(Mut,$2) }
MUTABLEBORROW expr {Unop(Borrow(Mut), $2)}
STATIC MUTABLE ID COLON typ ASSIGN expr { Static(Mut,($5,$3),$7) }

static

The static qualifier provides the global variable functionality. Static items are similar to
constance, but static items aren’t inlined with upon use, so there is only one instance for
each value and it’s fixed at a location in memory.

Syntax:

let static N:int = 5;

Grammar:

STATIC ID COLON typ ASSIGN expr { Static(Immut,($4,$2),$6)}
STATIC MUTABLE ID COLON typ ASSIGN expr { Static(Mut,($5,$3),$7) }

3d. Type Cast

To ensure safety, rusty does not do any implicit type cast (there will be neither promotion nor
demotion). However, rusty does support explicit type cast using keyword ``as'':

let x : int = 5.0 as int;

Types

10

4. Operators

4a. Arithmetic

The binary arithmetic operators are +, -, *, /, % .

Integer division truncates any fractional part.

The binary + and - operators have the same precedence, which is lower than the
precedence of *, /, % . Arithmetic operators associate left to right.

Syntax:

let x:int = (2+3) * 4;

Grammar:

expr:
 expr PLUS expr { Binop($1, Add, $3) }
 | expr MINUS expr { Binop($1, Sub, $3) }
 | expr TIMES expr { Binop($1, Mult, $3) }
 | expr DIVIDE expr { Binop($1, Div, $3) }
 | expr MODULO expr { Binop($1, Mod, $3) }

4b. Assignment

The operator = assigns an expression to a variable. Assignment operator is right
associative.

Syntax:

let x:int = 3;

Grammar:

LET ID COLON typ ASSIGN expr { Assign(Immut, ($4, $2), $6) }
| LET MUTABLE ID COLON typ ASSIGN expr { Assign(Mut, ($5,$3),$7)}

4c. Equivalence

Operators

11

The relational operators are <, <=, >, >= . They all have the same precedence. Below
them are == and != . Relational operators have lower precedence than arithmetic
operators.

Syntax:

let x:bool = (3 == 3);

Grammar:

expr:
 expr EQ expr { Binop($1, Equal, $3) }
 | expr NEQ expr { Binop($1, Neq, $3) }
 | expr LT expr { Binop($1, Less, $3) }
 | expr LEQ expr { Binop($1, Leq, $3) }
 | expr GT expr { Binop($1, Greater, $3) }
 | expr GEQ expr { Binop($1, Geq, $3) }

4d. Logical

The logical operators are and, or, not .

Syntax:

if (not valid)
if (valid or not_valid)
if (a_valid and b_valid)

Grammar:

expr:
 expr AND expr { Binop($1, And, $3) }
 | expr OR expr { Binop($1, Or, $3) }
 | NOT expr { Unop(Not, $2) }

4e. Memory

The unary reference operator & applied to a variable borrows ownership of the variable's
resource but continues to be immutable.

The unary mutable reference operator &mut applied to a variable's lvalue allows it's rvalue
to borrow ownership of the resource and allows the borrowed resource to be mutated.

Operators

12

The unary dereference operator * applied to a mutable reference variable will dereference
it and give access to the resource or actual contents of a reference.

Grammar:

TIMES expr %prec DEREF { Unop(Deref, $2) } /* * */
BORROW expr {Unop(Borrow(Immut), $2)} /* borrow */
MUTABLEBORROW expr {Unop(Borrow(Mut), $2)} /* mut borrow */

4f. Other unary operator expressions

Unary operators + and - give positive and negative signs to numeric values. They have
higher precedence than arithmetic operators.

Syntax:

let x:int = -3;
let x:int = +3;

Grammar:

MINUS expr %prec NEG { Unop(Neg, $2) } /* - */
PLUS expr %prec POS { Unop(Pos, $2)} /* + */

Operators

13

5. Statements and Expressions

5a. Declarations and lvalues/rvalues

Variables are declared through let statements that are followed by a type annotation and an
initializer expression, though it is not necessary to initialize right away. Any variables created
through declarations are valid from the point of declaration until the end of its enclosing
scope.

Syntax:

let x: int = 5;

Expressions are divided into lvalues and rvalues. Within each expression, subexpressions
occur in either lvalue context or rvalue context. Evaluation of an expression relies on
whether it is an lvalue or rvalue and the context in which the expression occurs.

Lvalues are expressions representing memory locations. All other expressions are rvalues.

When an lvalue is evaluated in an lvalue context, it denotes a memory location. When an
lvalue is evaluated in an rvalue context, it denotes the value held in that memory location.

5b. Literal expressions

A literal expression consists of one of the literal forms described earlier or the unit value, and
ending with a semicolon.

Syntax:

(); // unit value expression
"rusty"; // string literal expression
'r'; // character literal expression
42; // integer literal expression
42.35; // float literal expression

5c. Array expressions

An array expression is written by enclosing zero or more comma-separated expressions of
uniform type in square brackets.

Syntax:

Statements and Expressions

14

[] // empty array
[1, 2, 3, 4] // array of integers
[“a”, “b”, “c”, “d”, “e”] // array of characters

An array expression may also be of form:

 [expr1]*expr2 , where the expression after * must be a constant integer literal expression
(so that it can be evaluated in the compile time). This is equivalent to:

[expr1, expr1, expr1, …] (expr2 times).

For example:

[0]*2;

is equivalent to:

[0,0];

5d. Tuple expressions

Tuples are written by enclosing zero or more comma-separated expressions in parentheses.
They are used to create tuple-typed values.

Tuple-typed values, as defined in 3b, is a heterogeneous product of other types.

Syntax:

(0,"a",true); //a tuple consists of integer type, string type and bool type values

5e. Struct expressions

A struct expression is written as a brace-enclosed list of zero or more comma-separated
name-value pairs, providing the field values of a new instance of the struct.

For example, given a struct definition:

struct Point { x: float, y: float }

We can create a new Point struct like this:

Statements and Expressions

15

let f: Point = {x: 10.0, y: 20.0};

We may also associate methods to struct using keyword impl and call it using syntax below:

impl Point: {

 fn sumXY(&self: &struct) -> float {
 return (self.x + self.y);
}

let f: Point = {x: 10.0, y: 20.0};
println!("{}",f.sumXY());

Tuple is essentially a struct without names, so we can do similar things to create a new
instance of tuple:

let tuple_x: (float, string) = (20, “hello rusty”);

5f. Function calls

A function item defines a sequence of statements and a final expression, along with a name
and a set of parameters. Other than a name, all these are optional. Functions are declared
with the keyword fn.

Functions may declare a set of input variables as parameters, through which the caller
passes arguments into the function, and the output type of the value the function will return
to its caller on completion.

A hello-world function will look like this:

fn helloWorld() -> void {
 println!(“Hello world!”)
}

Grammar

Statements and Expressions

16

fdecl: /* fn foo(x:int) -> int { ... } */
 FUNC ID LPAREN formals_opt RPAREN OUTPUT typ LBRACE stmt_list RBRACE
 {
 outputType = $7;
 fname = $2;
 formals = $4;
 body = List.rev $9 }

FUNC LPAREN func_input_opt RPAREN OUTPUT typ /* func type */
{
 FunctionT{
 input:$3;
 output:$6
 }

ID LPAREN actuals_opt RPAREN { Call($1, $3) } /* Function Call */

5g. Control flow

if/else

An if expression is a conditional branch in program control. The form of an if expression is a
condition expression, followed by a consequent block, and an optional trailing else block.

if (expr) {
 (block)
}
…
else {
 (block)
}

The condition expressions must have type bool. If a condition expression evaluates to true,
the consequent block is executed and any subsequent else if or else block is skipped. If a
condition expression evaluates to false, the consequent block is skipped and any
subsequent else if condition is evaluated. If all if and else if conditions evaluate to false then
else block is executed (if any).

Grammar:

stmt:
 IF LPAREN expr RPAREN stmt %prec NOELSE { If($3, $5, Block([])) }
 | IF LPAREN expr RPAREN stmt ELSE stmt { If($3, $5, $7) }

loops

Statements and Expressions

17

rusty supports three kinds of loops: for, while, and loop (infinite loop).

for

A for expression is used for looping over elements provided by an implementation of
std::iter::IntoIterator. (so far support only array).

For example, we may loop through an array or a String:

fn bar(f: &int) -> void {
 println!("{}",f);
}
let a: int = 0;
let b: int = 1;
let c: int = 2;

let v: &[int] = &[a, b, c];

for e in v {
 bar(e); //print 0, 1, 2 one at a time
}

Grammar:

FOR ID IN expr LBRACE stmt RBRACE
 { For($2, $4, $6) }

while

A while loop begins by evaluating the boolean loop conditional expression. If the loop
conditional expression evaluates to true, the loop body block executes and control returns to
the loop conditional expression. If the loop conditional expression evaluates to false, the
while expression completes.

Syntax:

while (expr) {
 (block)
}

let mut i:int = 0;

while i < 42 {
 println!("hello world");
 i = i + 1;
} //will print “hello world!” 42 times.

Statements and Expressions

18

Grammar:

 WHILE LPAREN expr RPAREN stmt { While($3, $5) }

loop

The "loop" keyword indicates an infinite loop.

Syntax:

let count: int = 0;

loop {
 count += 1;
}

Grammar:

LOOP stmt { Loop($2) }

break/continue

rusty also has break and continue expression to control the flow.

A break expression immediately terminates the innermost loop enclosing it. It is only
permitted in the body of a loop.

A continue expression immediately terminates the current iteration of the innermost loop
enclosing it, returning control to the loop head. In the case of a while loop, the head is the
conditional expression controlling the loop. In the case of a for loop, the head is the call-
expression controlling the loop. It is only permitted in the body of a loop.

5h. Block

A block expression conceptually introduces a new namespace scope. Use items can bring
new names into scopes and declared items are in scope for only the block itself.

A block will execute each statement sequentially, and then execute the expression (if given).
If the block ends in a statement, its value is () .

Syntax:

let x: () = { println!("Hello."); }; //a block expression with value ()
let x: int = { println!("Hello."); 5 }; //a block expression with int value 5.

Statements and Expressions

19

6. Memory and Safety
rusty’s main goal is to provide memory safety in the same way as Rust. Declarations without
assignment are not allowed.

When variables are assigned to a value, variables are bound to a resource, where they have
ownership. As soon as the variable goes out of scope, the variable’s resources are
automatically freed, and any future references to the variable are no longer valid.

At any given time, there is only one variable that is allowed to own any given resource. After
a variable's value has been moved from the old binding to a new one, the old binding can no
longer be used. The new binding's value is immutable.

Rather than moving ownership from one variable to another completely, it is possible to
borrow ownership via references using the & operator. A new binding that borrows
ownership does not deallocate the resource when the binding goes out of scope, allowing
one to use the original binding again. Values of references are still immutable.

A mutable reference done via the &mut operator provides a way for mutable ownership
borrowing. A * operator is required to access the contents of a mutable reference. A
mutable reference can only be made on a variable that is explicitly declared as mutable with
the mut qualifier.

Memory and Safety

21

7. Thread Concurrency Safety
rusty's memory safety extends to thread usage and concurrency as well. The goal is to
prevent data races among code executing in parallel. The standard library is used for
threads.

There are two keywords crucial to concurrency, send and sync . send indicates that a
variable of a given type can have ownership of its variables safely transferred between
different threads. sync indicates that a variable of a given type is guaranteed to uphold
safety when used from different threads running at the same time.

A thread is created with a call to the spawn method. It returns a handle to the child thread,
which can be used to wait for the child to finish and obtain its result. spawn accepts a
closure as an argument, which by default take references to variables. By using a move
closure, variables are moved from the original closure environment into the new thread.

The join method will free memory associated with the chosen thread and return its state.

The panic method will crash the currently executing thread.

Two wrapper types, rc and arc , meaning reference count and atomic reference count
respectively, are used to help track the total count of references made to variables being
operated on within threads.

 rc guarantees that a variable will not be destroyed until all references to it are out of
scope. Variable resources are immutable. rc is not thread safe. arc is a version of rc
that is thread safe. Reference counts in both rc and arc are increased when their
variables are called with the special clone function.

Two types of locks are provided as wrapper types, mutex and rwlock . They provide
memory safety in mutating variable resources across threads, but incorrect usage may lead
to deadlocks. A thread calling the lock method will obtain the lock for the variable until it
releases the lock with the unlock method or goes out of scope. Other threads trying to lock
the same lock will block until a lock can be acquired.

Thread Concurrency Safety

22

fn main() -> void {
 let data:array = arc::(mutex::(array[1, 2, 3])); // arc allows multiple thread sha
ring, mutex allows mutability
 let x:int = 0;

 for (i = 0; i < 10; i++) {
 let data:array = data.clone(); // increase reference count to data
 thread::spawn(move || { // spawn thread
 let mut data:array = data.lock(); // lock mutex call
 data[0] += i; // mutate array
 }); // unlock mutex implicitly since out of scope
 }
}

Thread Concurrency Safety

23

8. Grammar

Scanner

let alpha = ['a'-'z' 'A'-'Z']
let escape = '\\' ['\\' ''' '"' 'n' 'r' 't']
let escape_char = ''' (escape) '''
let ascii = ([' '-'!' '#'-'[' ']'-'~'])
let digit = ['0'-'9']
let id = alpha (alpha | digit | '_')* (*TODO: exclude keywords*)
let string = '"' ((ascii | escape)* as s) '"'
let char = ''' (ascii | digit) '''
let float = (digit+) ['.'] digit+
let int = digit+
let whitespace = [' ' '\t' '\r']
let newline = '\n'

rule token = parse
 whitespace { token lexbuf }
| newline { incr lineno; token lexbuf}
| "/*" { incr depth; comment lexbuf }
| "//" { comment2 lexbuf }
| '(' { LPAREN }
| ')' { RPAREN }
| '{' { LBRACE }
| '}' { RBRACE }
| ';' { SEMI }
| ':' { COLON }
| ',' { COMMA }
(* Operators *)
| '+' { PLUS }
| '-' { MINUS }
| '*' { TIMES }
| '/' { DIVIDE }
| '%' { MODULO }
| '=' { ASSIGN }
| "==" { EQ }
| "!=" { NEQ }
| '<' { LT }
| "<=" { LEQ }
| ">" { GT }
| ">=" { GEQ }
| "and" { AND }
| "or" { OR }
| "not" { NOT }
| '.' { DOT }
| '[' { LBRACK }
| ']' { RBRACK }

Grammar

24

(* Ownership *)
| "&" { BORROW }
| "mut" { MUTABLE }
| "&mut" { MUTABLEBORROW }
| "static" { STATIC }
| "const" { CONST }
(* Branch Control *)
| "if" { IF }
| "else" { ELSE }
| "for" { FOR }
| "while" { WHILE }
| "loop" { LOOP }
| "continue" { CONTINUE }
| "break" { BREAK }
| "in" { IN }
(* Data Types *)
| "int" { INT }
| "float" { FLOAT }
| "bool" { BOOL }
| "char" { CHAR }
| "true" { TRUE }
| "false" { FALSE }
| "struct" { STRUCT }
| "impl" { IMPL }
| "let" { LET }
| "as" { AS }
| "void" { VOID }
(* function *)
| "fn" { FUNC }
| "->" { OUTPUT }
| "return" { RETURN }

(* Other *)
| int as lxm { INT_LITERAL(int_of_string lxm) }
| float as lxm { FLOAT_LITERAL(float_of_string lxm) }
| char as lxm { CHAR_LITERAL(String.get lxm 1) }
| escape_char as lxm{ CHAR_LITERAL(String.get (unescape lxm) 1) }
| string { STRING_LITERAL(unescape s) }
| id as lxm { ID(lxm) }
| eof { EOF }
| '"' { raise (Exceptions.UnmatchedQuotation(!lineno)) }
| _ as illegal { raise (Exceptions.IllegalCharacter(!filename, illegal, !lineno)) }

and comment = parse
 newline { incr lineno; comment lexbuf }
 | "*/" { decr depth; if !depth > 0 then comment lexbuf else token lexbuf }
 | "/*" { incr depth; comment lexbuf }
 | _ { comment lexbuf }

and comment2 = parse
 newline {token lexbuf}
 | _ {comment lexbuf}

Grammar

25

Parser

program:
 decls EOF { $1 }

decls:
 /* nothing */ { [] }
 | decls fdecl { $2 :: $1 }

fdecl: /* fn foo(x:int) -> int { ... } */
 FUNC ID LPAREN formals_opt RPAREN OUTPUT typ LBRACE stmt_list RBRACE
 {
 outputType = $7;
 fname = $2;
 formals = $4;
 body = List.rev $9 }

formals_opt:
 /* nothing */ { [] }
 | formal_list { List.rev $1 }

formal_list:
 ID COLON typ { [($3,$1)] }
 | formal_list COMMA ID COLON typ { ($5,$3) :: $1 }

typ:
 INT { DataT(IntT) }
 | BOOL { DataT(BoolT) }
 | FLOAT { DataT(FloatT) }
 | CHAR { DataT(CharT) }
 | VOID { DataT(VoidT) }
 | LBRACK typ SEMI INT_LITERAL RBRACK {ArrayT($2,$4)} /* [int;10] type is an integer
array of length 10 */
 | LPAREN func_input_opt RPAREN {TupleT(List.rev $2)} /* (int,char,float) */
 | BORROW typ { SliceT(Immut,$2) } /* &int */
 | MUTABLEBORROW typ { SliceT(Mut,$2) } /* &mut int */
 | ID { StructT($1) }
 | FUNC LPAREN func_input_opt RPAREN OUTPUT typ /* func type: fn (int) -> int */
 {
 FunctionT{
 input:$3;
 output:$6
 }
 }

func_input_opt:
 /* nothing */ { [] }
 | func_input_list { List.rev $1}

func_input_list:
 typ {[$1]}
 | func_input_list COMMA typ { $3 :: $1}

Grammar

26

struct_list_opt:
 /* nothing */ { [] }
 | struct_list { List.rev $1}

struct_list:
 ID COLON expr {[$1,$3]}
 | struct_list COMMA ID COLON expr { ($3,$5) :: $1 }

stmt_list:
 /* nothing */ { [] }
 | stmt_list stmt { $2 :: $1 }

stmt:
 expr SEMI { Expr $1 }
 | RETURN SEMI { Return Noexpr }
 | RETURN expr SEMI { Return $2 }
 | LBRACE stmt_list RBRACE { Block(List.rev $2) }
 | IF LPAREN expr RPAREN stmt %prec NOELSE { If($3, $5, Block([])) }
 | IF LPAREN expr RPAREN stmt ELSE stmt { If($3, $5, $7) }
 | FOR ID IN expr LBRACE stmt RBRACE
 { For($2, $4, $6) }
 | LOOP stmt { Loop($2) } /* loop {...} is an infinite loop */
 | WHILE LPAREN expr RPAREN stmt { While($3, $5) }
 | STRUCT ID LBRACE formals_opt RBRACE { StructDef($2,$4) } /* Struct */
 | IMPL ID LBRACE fdecl RBRACE { ImplDef($2,$4) }

expr_list:
 /* nothing */ { [] }
 | expr_list COMMA expr { $3 :: $1 }

tuple_list:
 expr COMMA expr {[$3,$1]}
 | expr_list COMMA expr { $3 :: $1 }

expr:
 INT_LITERAL { IntLit($1) } /* Literals */
 | FLOAT_LITERAL { FloatLit($1)}
 | CHAR_LITERAL { CharLit($1)}
 | STRING_LITERAL { StringLit($1)}
 | TRUE { BoolLit(true) }
 | FALSE { BoolLit(false) }
 | ID %prec NOACCESS { Id($1) }
 | LBRACK expr_list RBRACK { ArrayLit(List.rev $2) } /* Array and Tuple */
 | LPAREN RPAREN { TupleLit([]) } /* () empty tuple (or unit)*/
 | LPAREN expr COMMA RPAREN { TupleLit([$2]) }
 | LPAREN tuple_list RPAREN { TupleLit(List.rev $2) }
 | expr LBRACK expr RBRACK { ArrayTupleAccess($1,$3) }
 | ID LBRACE struct_list_opt RBRACE { StructCreate($1,$3) }
 | expr DOT ID { StructAccess($1,$3) } /* Point.x is struct access */
 | expr PLUS expr { Binop($1, Add, $3) } /* Binary Operation */

Grammar

27

 | expr MINUS expr { Binop($1, Sub, $3) }
 | expr TIMES expr { Binop($1, Mult, $3) }
 | expr DIVIDE expr { Binop($1, Div, $3) }
 | expr MODULO expr { Binop($1, Mod, $3) }
 | expr EQ expr { Binop($1, Equal, $3) }
 | expr NEQ expr { Binop($1, Neq, $3) }
 | expr LT expr { Binop($1, Less, $3) }
 | expr LEQ expr { Binop($1, Leq, $3) }
 | expr GT expr { Binop($1, Greater, $3) }
 | expr GEQ expr { Binop($1, Geq, $3) }
 | expr AND expr { Binop($1, And, $3) }
 | expr OR expr { Binop($1, Or, $3) }
 | MINUS expr %prec NEG { Unop(Neg, $2) } /* Unary Operation */
 | NOT expr { Unop(Not, $2) }
 | PLUS expr %prec POS { Unop(Pos, $2)}
 | TIMES expr %prec DEREF { Unop(Deref, $2) }
 | BORROW expr {Unop(Borrow(Immut), $2)}
 | MUTABLEBORROW expr {Unop(Borrow(Mut), $2)}
 | LET ID COLON typ ASSIGN expr { Assign(Immut, ($4, $2), $6) } /* Assignment */
 | LET MUTABLE ID COLON typ ASSIGN expr { Assign(Mut, ($5,$3),$7)}
 | expr AS typ { Cast($3, $1)} /* 32 as float */
 | CONST ID COLON typ ASSIGN expr { Constant(($4,$2),$6)}
 | STATIC ID COLON typ ASSIGN expr { Static(Immut,($4,$2),$6)}
 | STATIC MUTABLE ID COLON typ ASSIGN expr { Static(Mut,($5,$3),$7) }
 | ID LPAREN actuals_opt RPAREN { Call($1, $3) } /* Function Call */
 | ID DOT ID LPAREN actuals_opt RPAREN { StructMethodCall($1,$3,$5) } /* Call Struct
Methods */
 | LPAREN expr RPAREN { $2 } /* Parenthesis */

actuals_opt:
 /* nothing */ { [] }
 | actuals_list { List.rev $1 }

actuals_list:
 expr { [$1] }
 | actuals_list COMMA expr { $3 :: $1 }

Grammar

28

References
GNU C Reference Manual: https://www.gnu.org/software/gnu-c-manual/gnu-c-
manual.html
Rust Reference: https://doc.rust-lang.org/reference.html
K&R C Programming Language
Dice Project Report: http://www.cs.columbia.edu/~sedwards/classes/2015/4115-
fall/reports/Dice.pdf

References

29

https://www.gnu.org/software/gnu-c-manual/gnu-c-manual.html
https://doc.rust-lang.org/reference.html
http://www.cs.columbia.edu/~sedwards/classes/2015/4115-fall/reports/Dice.pdf

	Introduction
	Lexical Conventions
	Types
	Operators
	Statements and Expressions
	Memory and Safety
	Thread Concurrency Safety
	Grammar
	References

