

eGrapher Language Reference Manual

Long Long: ll3078@columbia.edu
Xinli Jia: xj2191@columbia.edu

Jiefu Ying: jy2799@columbia.edu
Linnan Wang: lw2645@columbia.edu
Darren Chen: dsc2155@columbia.edu

mailto:ll3078@columbia.edu
mailto:ll3078@columbia.edu
mailto:xj2191@columbia.edu
mailto:xj2191@columbia.edu
mailto:jy2799@columbia.edu
mailto:jy2799@columbia.edu
mailto:lw2645@columbia.edu
mailto:lw2645@columbia.edu
mailto:dsc2155@columbia.edu
mailto:dsc2155@columbia.edu

Content

1. Introduction
2. Types and Literals

2.1 Primitive Types
2.2 Lists
2.3 Comment

3. Expressions
3.1 Primary Expressions
3.2 Unary Operators
3.3 Multiplicative Operators
3.4 Additive Operators
3.5 Relational operators
3.6 Equality Operators
3.7 Boolean AND
3.8 Boolean OR
3.9 Assignment

4. Statements
4.1 Conditional
4.2 while
4.3 for loop
4.4 break
4.5 continue
4.6 return

5. Functions
6. Built-in function

6.1 Print
6.2 Plotting
6.3 Type Conversions

7. Program Structure
8. Sample Program
9. Complete Table of Keywords

1.Introduction

eGrapher offers an innovative way of drawing art with pinpoint accuracy. The language gives
the user a wide set of tools to accurately illustrate detailed drawings compared to simple and
rigid pre-installed tools such as paint on Windows. The goal of eGrapher is to make drawing on
digital systems easier as well as allow for users to draw more complicated paintings through
mathematical functions. The project will allow us to also better understand the intersection of
mathematics and art. Users will be able to use simple syntax and math expression to draw
graphs, diagrams, and more complicated objects through simple objects.

The following is a reference manual for using eGrapher. It describes in detail the ideas and
design thoughts behind lexical conventions, basic types scoping rules, built-in functions, and
also gives a sample program with its output.

2. Types and Literals

eGrapher has a set of types and literals which are similar to those of most programming
languages. Since eGrapher compiles into C, most of these specifications match those of the
compiled language. Types in eGrapher can be largely classified into primitive types and
nonprimitive (userdefined) types. List, named tuples and graph nodes fall into the latter. While
primitive data types are passed by value, nonprimitive data types are always passed by
reference

2.1 Primitive types

2.1.1 Integers
An integer literal (e.g. 0, 12, 1024, etc.) is a sequence of digits and is taken to be

decimal.
In eGraph, the keyword int indicates an integer. And all integers are 4 bytes in size thus

can represent any signed integer in the range [2147483647, +2147483647].

int a = 10;

2.1.2 String
String literals are defined as a sequence of symbols. They are identified as being

surrounded by double quotes: “hello world”. For variable instantiation, the string keyword is used
to state type. In order for double quote (“) or single quote (‘) symbols to be a part of the string,
they must be preceded with a backslash (e.g. “he said \“Hi\” ”)

string a = “Hello!”;

2.1.3 Floating Point Numbers

A floating literal consists of an integer part, a decimal point and a fraction part,The

integer and fraction parts both consist of a sequence of digits. Either the integer part or the
fraction part (not both) may be missing.

float a = “1.1”;

2.1.4 Boolean
Boolean represents the most basic unit of logic. It takes either the value of True or False .

Variables are typed using the keyword bool .

bool a = True;

2.2 Lists

The list data type is signified using the left and right braces “[]”. List types are like arrays in that
they allow for manipulation using indexing, but are also variable in size. They automatically
resize to the amount of data in the list.

list <int > a = [1,2,3,4,5];
list<string> b = [];

Lists can be mutated to include more or less values using built-in function: add and del .
The add keyword appends the value to the end of the list. The del keyword deletes the object at
the index specified. The length keyword returns the number of element in a list:

a.add (6);
a.del (2);
a.length ();

2.3 Comment
The characters /* introduce a comment, which terminates with the characters */.

3. Expressions

3.1 Primary expressions

3.1.1 identifier
An identifier is a sequence of letters and digits; the first character must be alphabetic.

The underscore ‘‘_’’ counts as alphabetic. Upper and lower case letters are considered different.

3.1.2 literals

A literal refers to a data type literal. The integer, floating point, boolean, string literals
have a range of possible values defined in the previous section.

3.1.3 grouping expressions: (expression)
The set of opening and closing parenthesis can be used to group an expression into a

higher precedence. The type and value of this primary expression are that of the contained
expression.

3.1.4 list index access: identifier [expression]
An identifier followed by expression surrounded by opening and closing brackets,

denotes element index access. The identifier is a list, and the expression must be a nonnegative
integer, and the type and value of the primary expression are that of the element at index.

3.2 Unary operators

The operators in this section have right-to-left associativity

3.2.1 - expression
The - operator denotes arithmetic negation for integer and floating point types.
3.2.2 !expression
The ! operator denotes boolean negation for boolean types.

3.3 Multiplicative Operators
The operators in this section have left-to-right associativity. Both expressions can be either
integers or floating point numbers.

3.3.1 expression * expression
The * denotes multiplication of integers or floating point numbers.

3.3.2 expression / expression
The / denotes division of integers or floating point numbers.

3.3.3 expression ^ expression
The ^ denotes power of integers or floating point numbers.

3.3.4 expression % expression
The % denotes module operator. The number produced by the evaluation of the
operator will have the same sign as the dividend (left) operand.

3.4 Additive Operators
The operators in this section have left-to-right associativity.

3.4.1 expression + expression
The + operators denote integer and floating point addition.

3.4.2 expression - expression
The - operators denote integer and floating point subtraction.

3.5 Relational operators
The operators in this section have left-to-right associativity. The result of relational operator
evaluation is a boolean type, the value of which corresponds to the truth value of the
expression. Relational operators support integer or floating point operands, but not a
combination of both.

3.5.1 expression < expression , expression > expression
The < and > operators denote the less than and greater than comparison.

3.5.2 expression <= expression , expression >= expression
The <= and >= operators denote the less than or equal to and greater than or equal to
comparison.

3.6 Equality Operators

The operators in this section have left-to-right associativity. The result of equality
operator evaluation is a boolean type, the value of which corresponds to the truth value
of the expression.

3.6.1 expression == expression, expression != expression.
The == and != operators denote the equal to and not equal to comparison, which support
integer and floating point operands. If an integer is compared to a floating point, the
integer is automatically promoted to a floating point.

3.7 Boolean AND

3.7.1 expression && expression The && operator denotes the boolean AND operation.
It has lefttoright associativity and only supports boolean operators; type conversions or
demotions are not supported.

3.8 Boolean OR

3.8.1 expression | | expression The | | operator denotes the boolean OR operation.
It has lefttoright associativity and only supports boolean operators; type conversions or
demotions are not supported.

3.9 Assignment
3.9.1 identifier = expression
The = operator denotes assignment. It has right-to-left associativity. The identifier must
have the same type as the expression; type conversions, promotions, or demotions, are
not supported.
3.9.2 identifier (+ or - or *or /) = Integer/float
Self increment of identifier

identifier = Integer/float + identifier

4. Statements
4.1 Conditional
Conditional statements include if and if/else statements and have the following form:

selection-statement:

if (expression) statement
if (expression) statement else statement

Selection statements choose one of a set of statements to execute, based on the evaluation of
the expression. The expression is referred to as the controlling expression.

The controlling expression of an if statement must have scalar type. For both forms of the if
statement, the first statement is executed if the controlling expression evaluates to nonzero. For
the second form, the second statement is executed if the controlling expression evaluates to
zero. An else clause that follows multiple sequential else-less if statements is associated with
the most recent if statement in the same block (that is, not in an enclosed block).
Example:

if (expression)

statement
if (expression) statement

else statement

if (expression)
{

statement
if (expression) statement
}

else statement
The first example indicates that later if statement is corresponding to the else statement.
The first example indicates that former if statement is corresponding to the else statement,
because the later if statement is inside the scope of the first statement.

4.2 while
while statement execute the attached statement (called the body) repeatedly until the controlling
expression evaluates to zero. In the for statement, the second expression is the controlling
expression. The format is as follows:

iteration-statement:
while (expression) {statement}

The controlling expression of a while statement is evaluated before each execution of the body.

4.3 for loop
The for statement has the following form:

for (expression1; expression2; expression3) {statement}
The first expression specifies initialization for the loop. The second expression is the controlling
expression, which is evaluated before each iteration. The third expression often specifies
incrementation. It is evaluated after each iteration.

This statement is equivalent to the following:

expression1; while(expression2) { statement expression3;}

One exception exists, however. If a continue statement is encountered, expression3 of the for
statement is executed prior to the next iteration.

Any or all of the expressions can be omitted. A missing expression2 makes the implied while
clause equivalent to while. Other missing expressions are simply dropped from the previous
expansion.

4.4 break
The break statement can appear only in the body of an iteration statement. It transfers control
to the statement immediately following the smallest enclosing iteration or switch statement,
terminating its execution.

4.5 continue
The continue statement can appear only in the body of while or loop statement. It causes control
to pass to the loop-continuation portion of the smallest enclosing while, or for statement; that is,
to the end of the loop. Consider each of the following statements:

while (...)
{
..
continue;
}
for (...) {
...
continue;
}

4.6 return
A function returns to its caller by means of the return statement. The value of the expression is
returned to the caller (after conversion to the declared type of the function), as the value of the
function call expression. The return statement cannot have an expression if the type of the
current function is void. If the end of a function is reached before the execution of an explicit

return, an implicit return (with no expression) is executed. If the value of the function call
expression is used when none is returned, the behavior is undefined.

5. Functions
Functions are defined with the fun keyword:
fun Function-name (argument-type arg1, argument-type arg2,...) { statement }
They should be defined before being used. Arguments are passed by reference, and are
passed by value for other data types, and passing arguments requires the specification of their
types. Types include integer, string, list and other build-in types. There can be multiple
arguments given to a function. Each argument’s type should be defined prior to its name when
defining a function. The type of the argument should not be specified when calling a function.
The program checks the types of arguments as the function is being called. The return keyword
returns value. The function will terminate when it sees the return keyword, and the program will
return to where the function was called. Return type can be any types that are supported in
eGrapher, but it needs to match the predefined type of the function. If the return value is type
void, the function returns nothing.

6. Built-in Function
6.1 print (identifier) or print (literals)

Prints an integer, a floating point number or a string.

print (s);

6.2 Plotting

6.2.1 plot (identifier1, identifier2, identifier3, identifier4)

Show the graph plotted by given two lists identifier1 and identifier2.
Identifier3 and identifier4 are String indicating style and color of dot and lines

separately. If styles are not set, the default setting of marker is black dot and black line.
plot (X,Y, “o blue”, “- blue”);
plot (X,Y, “+ red”, “: red”);
plot (X,Y, “”, “”); is equal to plot (X,Y, “. black”, “- black”);

Identifier3 and identifier4 style guide

Line Style Specifier Description

- Solid line (default)

-- Dashed line

: Dotted line

-. Dash-dot line

Marker Specifier Description

o Circle

+ Plus sign

* Asterisk

. Point

x Cross

s Square

d Diamond

6.2.2 hold ()
If hold () is used, next plot will be add on the previous graph instead of creating a new

one.

hold() ;

6.3 Type Conversions

6.3.1 float2int (identifier)

If the floating point number has a fractional portion, this will be truncated. If the floating
point number is too large to represent as an integer
6.3.2 int2float (identifier)
Takes an identifier of type integer as an argument and returns the floating point
representation.
6.3.3 string2int (identifier)
Takes an identifier of a string, and converts it to an integer.
6.3.4 string2float (identifier)
Takes an identifier of a string, and converts it to a float point number.

7. Program Structure

Every statement in eGrapher must belong to either the main function or defined external
functions outside of it. The external functions are used to write simple programs that can be
executed in the main function. As a result, only functions, variables, and objects called in the
main function will be executed and stored. In addition, the name main in the global name space
is reserved and does not need a return statement.

Any program will consist of a sequence of external definitions. This is designed to give the user
more flexibility. External definitions may be given for function, for simple variables, and for lists.
They are used to help declare and allocate storage for objects when called upon.

8. Sample Program

/* Bubble sort code */
int main()
{
 list<int> array = [3,5,2,1,4];
 int c, d, swap;
 int n = array.length();
 list<int> array_x;
 for (d = 1 ; d <= array.length(); d+=1){
 array_x.add(d);
 }
 plot (array_x,array, “o red”, “- red”);
 hold;
 for (c = 0 ; c < (n - 1); c+=1)
 {
 for (d = 0 ; d < n - c - 1; d+=1)

 {
 if (array[d] > array[d+1]){
 swap = array[d];
 array[d] = array[d+1];
 array[d+1] = swap;
 }
 }
 }
 print(“Sorted list in ascending order:\n”);
 for (c = 0 ; c < n ; c+=1){
 print(array[c]);
 print(“ ”);
 }
 plot(array_x, array, “x blue”, “- blue”);

9. Complete Table of Keywords

Keywords Description

int signed integer value

string list of characters

float floating point number

bool boolean value

list Sequence of numeric, Boolean, or other
types.

Null Empty address

fun fun_name (type arg1, type arg2, …) defines an external function

main(argv,argc) the main script for execution (with command
line arguments)

l.add(x) adds an element to the end of list

l.del(x) deletes the element in the list

I.length() Return length of a list

[fun(n) for x in l] iterative definition of a list

plot(X,Y,”arg1” , “arg2”) Plot graph

return val returns value

for(type name; conditional; post loop) {} c-style for loop

for variable in list {} python-style for loop

while(conditional) {} while loop

if(condition) {} elif (condition){} else {} conditional statement

break Stop iteration

continue Continue iteration

True Boolean value is true

False Boolean value is false

