

StockX

Jesse Van Marter jjv2121
Ravie Lakshmanan rl2857

Ricardo Martinez rmm2222
Sophie Lucy sjl2185

Language Reference Manual

Contents

Introduction 2

Lexical Conventions 3
Tokens 3
Identifiers 3
Comments 3
Whitespace 3
Separators 3
Reserved Words and Symbols 3

Data Types 5

Branch Control 7

Expressions 8
Declaration and Assignment 8
Arithmetic Operators 8
Relational Operators 8
Logic Operators 8

Functions 10
Built-in Functions 10
Function Definition 10

Introduction

The financial industry has been a perfect space for the use of programming languages because
of the heavy reliance on mathematical calculation and accuracy involved in gaining successful
returns. Technology has allowed people to be more precise in their trades and experimental
in their strategies. Thanks to the amount of historical as well as real time stock market data
publically available, there are infinite possibilities to the application of a financial
programming language. By using such resources, we intend to build a language that make it
easy for the user to implement complex algorithms to perform sophisticated financial
analysis.

2

Lexical Conventions

Tokens

Tokens are divided into identifiers, operators, separators, whitespace and reserved words.

Identifiers

Identifiers indicate function or variable name. StockX identifiers are case-sensitive.

Comments

Both single and multi-line comments are supported in StockX

e.g.​ //this is a si ngle line comment

/*this is a
multi-line comment/*

Whitespace

Whitespace is ignored in StockX.

Separators

; statement delimiter
{} function body separator
[] indication of array
() indication of list of argument(s)

Reserved Words and Symbols

Data Types

int
float
bool
null
string
stock

3

order
portfolio
struct
array
true
false

Boolean Logic Operators

and
or
not

Branch Control and Loops

if
else
for
while
return

Functions

function
void
return

Built-in Functions

delta
stddev
correlation
covariance
regression
ewma
lma

4

Data Types

int

- a string of numeric characters without a decimal point, and an optional sign character

float

- a string of numeric characters that can be before and/or after a decimal point, with
an optional sign character

bool

- a binary variable where value can be either​ true ​or​ false

null

- the value of an uninitialized object

string

- a finite sequence of ASCII characters, enclosed in double quotes
e.g. ​“we are stockx”

struct

A struct is a structure that allows the user to create their own custom data-type. A
struct may hold variables and/or functions. The syntax for creating a struct is as follows:

struct studentStruct = {

name : string,
age : int,
func : myfunc //where myfunc is a built-in or user-defined

 //function
}

To access struct fields, use a dot in between the struct and its fields.

e.g. int myAge = studentStruct.age;

studentStruct.func();

array

- arrays only hold elements of the same type

5

e.g. ​array string whoweare = [“we”, “are”, “stoc kx”];

Add

- <identifier>.add(<element>)
Remove

- <identifier>.remove(<index>)
Access

- <identifier>.at(<index>)
Minimum

- <identifier>.min()
Maximum

- <identifier>.max()
Average

- <identifier>.avg()

stock

A type that contains the stock symbol and its associated attributes like stock price at
any given time passed as an array of one or more elements.

e.g. stock goog = {
 name : “GOOG”,
 prices: [620.05, 625.50, 630.50]
}

Individual fields can be accessed by prefixing the field with the stock type and a dot.

e.g. goog.name, goog.price

delta() ​function - Given a stock and an array of stock prices at different times, the delta()
function calculates the price variations in the stock. So for an array of stock prices length n,
delta() would return n-1 elements.

e.g. delta(google.prices) ​calculates the difference of the two price values passed to
return the delta list [5.45, 5.50].

Order

A type that indicates a buy or sell order on a stock. The type has a ​.stddev()
function that calculates the standard deviation of an investment. The larger the value, the
riskier the investment is deemed, and implies the stock needs to be sold. On the other hand,
if the standard deviation value is low, it can be be bought.
It contains

● <identifier>.shares: the number of shares to be bought or sold
● <identifier>.stock: a stock type

6

● <identifier>.price: the price of the stock at the time the order is placed
● <identifier>.time: the timestamp at which the order is executed

portfolio

A type that holds the order history and thus the list of stocks owned.

7

Branch Control

if

- conditional ​if ​ statement are followed by a boolean expression

e.g. ​if(x==2){return true}

else

- An ​else ​ statement may follow an ​if ​ statement
- A statement list then follows

e.g.​ if(x==2) {retu rn true} else{return false}

for

The ​for ​ statement allows for looping over a range of values. The format is as follows:

e.g.​ for (initiali zation; termination; update) { stmt }

The initialization begins the for statement and is executed only once (before the loop begins).

The termination is a boolean expression that is checked for before each loop. When it returns
false, the loop terminates.

The update is an expression that occurs once after each loop, and should modify the variable(s)
being checked for in the termination.

while

The ​while ​ statement is used for looping so long as a boolean expression inside of the while
statement evaluates to true. The syntax is as follows:

e.g. while (expression) { stmt }

return

The return keyword is used both in function declarations, and inside of functions to return a
value. The syntax is as follows:

return expr;

8

The return keyword may also be used by itself, indicating a return type of void. This looks like:

return;

9

Expressions

Declaration and Assignment

The general syntax is as follows:
● <type> <identifier>;
● examples: ​int x; float number; string name;
● Arrays can be declared as follows - array <type> <identifier>;

e.g. ​array string whoweare = [“we”, “are”, “stockx”];

Arithmetic Operators

+ addition
- subtraction
* multiplication
/ division
% modulus
+= increment
-= decrement
*= multiply and assignment
/= division and assignment
%= modulus and assignment
^ power

Relational Operators

= equal to
== logical equal to
!= not equal to
< less than
<= less than or equal to
> greater than
>= greater than or equal to

10

Logic Operators

and

- logical intersection of two expressions

e.g. 0 and 1 evaluates to 0(false)

or

- logical union of two expressions

e.g. 1 or 0 evaluates to 1(true)

not

- logical negation of an expression

e.g. not 1 evaluates to 0

11

Functions

function

- establishes a user-defined function that will return a value

void

- when the function does not return a value

return

- caller of the function

Built-in Functions

map
- A function that takes two arguments - a function and an array, and applies the

function to each element in the array.
- e.g. ​map(delta(), [[80,90,100],[20, 30]]);

delta
- Calculates and returns the difference in a time series array.
- delta([20,30,50]) ​ would return [10,20]

stddev

- Calculates and returns the standard deviation of an array.
- stddev(x) ​ where x is array

correlation

- Given two different arrays, ​correlation() ​ function calculates the correlation
coefficient. The value of correlation coefficient is between -1 and 1. A positive
correlation indicates both arrays move in the same direction, whereas a negative
correlation corresponds to arrays moving in opposite direction.

- correlation(x,y) ​ where x and y are arrays

covariance

- Given two different arrays, ​covariance() ​ function calculates the covariance
between two stocks. A positive value indicates a positive correlation and vice-versa.

- covariance(x,y) ​ where x and y are arrays

regression

12

- Given an explanatory variable array x and dependent variable array y and a number n,
regression() ​ function computes the expected dependent y-value at x=n using
linear regression

- regression(x,y, 11) ​ where x and y are arrays will compute the linearly regressed
“expected” value of y at x=11.

ewma

- Calculates exponentially weighted moving average of time series array. Takes in array
of a time series and a center of mass. Center_of_mass= (length_of_ema-1)/2.

- ewma(goog.prices, 9.5) ​ for a 20day ewma

lma

- Calculates linear moving average of time series array. Takes in time series array,
length of average, and boolean for weighted moving average. If True, will return
weighted moving average. If false will return simple moving average.

- lma(goog.prices, 10, true) ​ will return a 10 day weighted moving average of
google prices.

Function Definition

Functions are defined in the following format:

function ​ <identifier> ​(​<argument list>​) ​ ​return ​ ​(​<data type>​){

<statement list>
}

e.g. ​function max(float a, float b) return (flo at) {

//Statement list
if(a > b) {return a;} else{return b;};

}

13

