
PolyGo! Language Reference Manual
Jin Zhou jz2792 | Jianpu Ma jm4437 | Pu Ke pk2532| Yanglu Piao yp2419

1. Introduction
PolyGo! is a mathematical language that allows users to conveniently manipulate polynomial
calculation. It can be used for solving a bunch of engineering polynomial algebra problems
including, but not limited to, evaluate stability of a linear system, circuit analysis and
electromagnetic field calculations. These questions are mostly procedural and can finally
simplify their forms as polynomial equations.
PolyGo! follows the basic C-like structure with its own unique polynomial data types and
utilities, which can greatly facilitate polynomial manipulation thus greatly helping with
engineering practice.

2. Lexical Conventions
There are six kinds of tokens: identifiers, keywords, constants, strings, expression operators, and
other separators.In general blanks, tabs, newlines, and comments as described below are ignored
except as they serve to separate tokens.At least one of these characters is required to separate
otherwise adjacent identifiers, constants, and certain operator-pairs.If the input stream has been
parsed into tokens up to a given character, the next token is taken to include the longest string of
characters which could possibly constitute a token.

2.1. Comment
Comments are confined by /* and */.
While single line comments starting with //.

The structure is like

//This a single-line comment.

/* This

is a

block

comment.*/

2.2. Identifiers
An identifier is a sequence of letters and digits used for naming variables and functions; We
follow the manner of C to make the first character be alphabetic (underscore ‘‘_’’also considered

as alphabetic). Identifiers in PolyGo! are case sensitive, which means upper and lower case
letters are considered different.

2.3. Keywords
Keywords in PolyGo! are special identifiers to be used as part of the programming language
itself. They may not be used or referenced in any other way; function definitions and variable
naming cannot override keywords.The following identifiers are reserved for use as keywords:

int float cint cfloat char bool

string void main while if else

continue break true false return const

2.4. Literal constants
There are several kinds of constants in PolyGo!, as follows:

2.4.1. Integer constants

An integer constant is a sequence of digits in decimal.

2.4.2. Character constants

A character constant is 1 or 2 characters enclosed in single quotes, ' and '. To represent a single
quote character as a character constant, it must be preceded by a backslash, e.g. \'. The backslash
character is used as an escape for several other special character constants, as shown in the
following:

Backslash \\

Single quote \'

Double quote \"

New line \n

End of string / null byte \0

2.4.3. Floating constants

A floating constant consists of an integer part, a decimal point, a fraction part, an e, and an
optionally signed integer exponent. The integer and fraction parts both consist of a sequence of
digits. Either the integer part or the fraction part (not both) may be missing; either the decimal

point or the e and the exponent (not both) may be missing. Every floating constant is taken to be
double-precision.

2.4.4. Boolean constants
The Boolean constants are the keywords true and false.

2.4.5. String constants

A string is a set of characters surrounded by double quotes, "and ". A string is considered in the
back end as an array of characters, which is held in memory as a contiguous block of data. To
represent the double quote character within a string, it must be preceded with the escape
character as specified for character constants, e.g. \". In addition, the same escapes as described
for character constants may be used.

2.5. Punctuation

Punctuator Use Example

, List separator int sum(int a, int b)

int a[3] = {0, 1, 2};

; Statement terminator int x = 3;

' ' Character constant delimiter char c = 'a';

" " String constant delimiter string x = "hello";

[] Used in array declaration and as array
subscript operator.

int x[4];

a = x[1];

{ } Statement delimiter and array/poly
initialization list delimiter

if (expr) { statements }

int a[3] = {0, 1, 2};

float p[[3]] = {2.5, -1.2,

0, 5};

() Conditional parameter delimiter,
expression precedence

while(i > 2)

< > Complex number delimiter cint a = <1, 2>;

[[]] Used in polynomial declaration and as
polynomial coefficient operator

float p[[3]] = {2.5, -1.2,

0, 5};

p[[1]] = 1.5;

2.6. Operators

Operator Use Associativity

= Assignment Right

== Test equivalence Non-associative

!= Test inequality Non-associative

> Greater than Non-associative

< Smaller than Non-associative

>= Greater than or equal
to

Non-associative

<= Less than or equal to Non-associative

&& AND Non-associative

|| OR Non-associative

. Access Left

* Multiplication Left

/ Division Left

+ Addition Left

- Subtraction Left

^ Exponentiation Left

% Modulo Left

3. Expressions
The following expressions categories are ordered by precedence with the highest precedence
first.

3.1. Primary Expressions
Primary expressions are identifiers, literals, (expressions), identifier(expression-list). Primary
expressions group left to right.
● identifier: An identifier that is not immediately followed by parentheses ‘()’ is taken to be
a variable identifier. The result of the expression is the value that the identifier ‘points’ to.
● literal : The value of a literal expression is simply the value corresponding to the literal
constants.
● (expression) : Any expression can be wrapped in parenthesis ‘()’ to create another
expression.
● identifier(expression-list) : An identifier followed by parenthesis ‘()’ is taken to be a
function invocation. Each expression inside the expression list is evaluated and passed into the
function that is identified by the identifier.

3.2. Unary operators
The operators in postfix expressions group left to right.
● expression.expression : call of a module function
● expression ++ : Increment of number type
● expression - - : Decrement of number type
● |expression| : Modulus of complex type
● !expression : Logical ‘not’ of number type

3.2.1. Polynomial reference

● expression[[expression]] : A postfix expression followed by an expression in double square
brackets is a postfix expression denoting a polynomial reference.

3.2.2. Array reference

● expression[expression] : A postfix expression followed by an expression in square
brackets is a postfix expression denoting an array reference.

3.3. Multiplicative Operators
● expression*expression : Multiplication of number types, complex number types, and
polynomial types
● expression/expression : Division of number types, complex number types, and polynomial
types
● expression%expression : Modulus of number types

3.4. Additive Operators
● expression +expression: Addition of number types, complex number types, and
polynomial types

● expression-expression: Subtraction of number types, complex types, and polynomial
types

3.5. Relational Operators
All relational operators are non associative. They all yield 1 if the specified relation is true and 0
otherwise. Valid for number types.
● expression<expression
● expression>expression
● expression<=expression
● expression>=expression

3.6. Equality Operators
Valid for number types, complex types and polynomial types.
● expression==expression
● expression !=expression

3.7. Logical Operators
All logical operators have the same precedence, and they are all left associative.
● expression && expression: Return 1 if both expressions are non 0. Valid for number
types
● expression || expression: Return 1 if either expressions are non 0. Valid for number types

3.8. Assignment Expressions
Assignment is right associative and returns the assigned value.
● lvalue = expression : Assign the result of expression to the identifier corresponding to the
lvalue.
● lvalue must be modifiable: it must not be an array, and must not have an incomplete type,
or be a function. Also, its type must not be qualified with constant; if it is a complex or
polynomial, it must not have an ember or, recursively, sub member qualified with constant.

4. Statements
4.1. Expression statement
We have the following form for expression:
 expression;

Usually this statement is assignment or function call.

4.2. Conditional statement
We have two form of conditional statements:
 if (expression) statement

 if (expression) statement else statement

4.3. while statement
The while statement has the form:
 while (expression) statement

4.4. for statement
The for statement has the form:
 for (expression1; expression2; expression3) statement

The first expression specifies initialization for the loop; the second specifies a test, made before
each iteration, such that the loop is terminated when the expression becomes 0; the third
expression typically specifies an increment which is performed after each iteration.

4.5. break statement
 This statement
 break;

causes termination of the smallest enclosing while, for statement; control passes to the statement
following the terminated statement.

4.6. continue statement
The statement
 continue;

causes control to pass to the loop-continuation portion of the smallest enclosing while or for
statement; that is to the end of the loop. More precisely, in each of the statements.

4.7. return statement
A function returns to its caller by means of the return statement, which has the form:

return(expression);
The value of the expression is returned to the caller of the function. If required, the expression is
converted, as if by assignment, to the type of the function in which it appears. Flowing off the
end of a function is equivalent to a return with no returned value.

5. Modules
Currently, we have 2 modules: std and poly. std module includes standard operations like
std.print(), std.re(), std.im(). poly module includes operations dealing with
polynomials, e.g. poly.findroots() and poly.order().

6. Declaration
Both variables and function have to be declared before use.

6.1. Variable Declaration
Variables have to be declared as following primitive data types: int, float, bool, char and some
advanced data types: cint, cfloat and string. They refer to integer, floating number, boolean,
character, complex integer, complex floating number and string. Complex integer means both
real part and imaginary part of a complex number are integers, complex floating number means
both real part and complex part are floating numbers. What’s more, we have array and
polynomial data type. Array refers to array of primitive or advanced data types mentioned above,
and polynomial refers to polynomial data type. Variables can be declared by expressions, and
they can only be declared and used inside a function. In other words, a variable defined in a
function cannot be used inside another function. Here are some examples:

● Declaration and initialization of proto type variables :
type ID = expr ;

● Declaration and initialization of array, int const indicates the size of the array:
type ID [int const] = {expr1 ,expr2 ,...};

● Declaration and initialization of polynomial, int const indicates the highest order:
type ID [[int const]] = {expr1 ,expr2 ,...};

6.2. Function Declaration
A function must have a return type, a function name, parameters if any, and the main body. For
the return type, in addition to data types mentioned above, also can be declared as “void”, which
means the function won’t return anything. Then functions have to be named in characters,
numbers and _. And parameters are needed to be declared inside parentheses next to the function
name. Multiple parameters are separated by commas. What’s more, a function without
parameters are allowed, when user just need the side effect of this function.

type ID (type ID, type ID, …) {
return(expr); (optional)

 }

7. Example Code

7.1. Hello world
This is a simple “Hello World” example code.

7.2. Application of polynomial
Polynomials are useful in solving some practical problems. For example, we can use PolyGo! to
analyze stability of a linear system. Because the necessary and sufficient condition for a stable
linear system is that all roots of its characteristic equation have negative real parts.

