
MAZE Reference Manual 
 
 

 
 
 
 
 

Alexander Brown (aab2212), Alexander Freemantle (asf2161),  
Michelle Navarro (mn2614), Lindsay Schiminske (ls3245) 

 

 
  
  
 
 
 
 
 
 
 
 

 



Introduction 
______________________________________________________ 
 

 
MAZE is a Java-like object-oriented language with  

game design features that allow programmers to create  
text-based games. The core building blocks of MAZE are  
custom classes. The language supports inheritance to  
allow for flexibility. It is a strongly-typed  
language. 

 
The language reference manual is organized as follows:  
 

● Chapter 1 Lexical Conventions : Covers comments,  
identifiers, keywords, and literals  

● Chapter 2 Data Types : Describes the difference  
between primitive and non-primitive types  

● Chapter 3 Expressions and Operators : Describes 
expressions, arithmetic, and conditional operators   

● Chapter 4 Statements : Covers conditionals and  
while statements 

● Chapter 5 Methods : Covers the basics of methods  
and how to invoke them   

● Chapter 6 Scope : Explains how to determine scope   
● Chapter 7 Classes : Covers class definitions,  

fields, constructors, and lists built-in classes  1

 
 
 

 

 

1 Logo concept by Filip Lichtneker https://dribbble.com/shots/2641206-Maze-Media-logo-concept 



 1. Lexical Conventions 
__________________________________________ 
 

     1.1 Comments 
          Comments begin with (* and end with *) 
 

    1.2 Identifiers 
An identifier is any sequence of characters that 
can be used as a name for a variable, method, or 
new data type. Valid identifier characters include 
ASCII letters, decimal digits, and underscores. The 
first character of an identifier cannot be a digit.  
Identifiers cannot be the same sequence of 
characters as keywords. 

  
    1.3 Keywords 
         The following identifiers are reserved and cannot be  

          used otherwise. They are case sensitive: 
 
          int             while           null 
          char            bool            true 
          return          print           false 
          if              else   string 

void   extends    class 
 

    1.4 Literals 
MAZE literals can be integers (see 2.1.1), booleans 
(2.1.2), floats (2.1.3), characters(2.1.4), and strings 
(2.1.5).  

   

 
  
 
 

 



 2. Data Types 
_________________________________________ 
 
  2.1 Primitive Types 

2.1.1 Integers 
          int 
          An integer is a whole value between -231 and 231  - 1. 

The default value is 0.  
 

2.1.2 Boolean 
     bool 
     A single byte that can have the value true or false. 

The default value is false. 
 

2.1.3 Float 
float 
A float is an integer followed by a decimal and a 

 fractional part. The default value is 0.0 .  
 

2.1.4 Void 
void 
Use the void type to signify a function that has no 
return value.  

 
     2.1.5 Character 
 char 

A character is a single byte. It holds the value of a 
character in the set of allowed characters. The 
default value is  an  empty char ‘’ . 
The following are escape-sequence characters 

• ’\\’ - backslash  
• ’\”’ - double-quote  
• ’\’’ - single-quote  
• ’\n’ - newline  
• ’\r’ - carriage return  
• ’\t’ - tab character 

 



2.1.6 String 
string  
Strings are a sequence of zero or more  

     characters, digits, spaces or other ASCII 
     characters. The default value is the empty string “” . 
 ex.  “This is a string” 
 

  2.2 Non-primitive Types 
2.2.1 Arrays 

A container that holds a fixed number of values of a 
single type. The size of the array must be specified 
at creation. However the default value at each index 
will be 0. 

 
2.2.2 Objects 

An instance of a class. See section 7 for more  
information of classes and how objects work 

          within them. The default instance of an object is the  
one resulting from the invocation of the default 
constructor.  

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 3. Expressions and Operators 
__________________________________________ 
 

3.1 Expressions 
An expression is composed of: 

● A literal value  
● A variable identifier 
● A reference  
● An arithmetic expression  

An arithmetic expression consists of one or 
more operands and zero or more operators. 
The arithmetic expression may include 
parentheses for grouping. 
Arithmetic expression examples: 

Operand, 0 operators: 100;  
Two operands, 1 operator: 100 + 101; 
Use of Parentheses: (100*(102-101)); 

● A call to a method that returns some value 
or reference 

● A call to a constructor to create an object 
  
3.2 Operators 

3.2.1 Assignment Operators 
The assignment operators assign values from the  
right hand operand to the left side operand. 

 
     ex. int x = 4; 

    int y = 3 + 7; 
    int z = null; 

 
3.2.2 Arithmetic Operators 

The arithmetic operators include + (addition), - 
(subtraction), * (multiplication), / (division)  
and negation.  
 

  
 



               ex.  
          Addition: 

                    int x = 6 + 2; 
     Subtraction: 

int x = 6 - 2; 
     Multiplication: 

int x = 6 * 2; 
     Division: 

int x = 6 / 2; 
     Negation: 

int x = -6; 
  

3.2.3 Relational Operators 
expression  < expression 
expression  > expression 
expression  <= expression 
expression  >= expression 
 
The operators are < (less than), >(greater than),  
<= (less than or equal to) and >=(greater than or 
equal to). The relational operators group left to 
right. 

 
3.2.3 Equality Operators 
 expression  == expression 

expression  != expression 
 

The == (equal to) and != (not equal to) operators 
evaluate the expression to determine if the two  
expressions are equal or not equal.  

 
3.2.4 Logical Operators 

expression && expression 
expression || expression  
 
The && (logical AND) returns true if both  
expressions are met and false otherwise. The || 



 

(logical OR) returns true if at least one 
expression is true and false if no expressions 
are met. 
 

4. Statements 
__________________________________________ 
 

4.1 Expression Statements 

Expression statements are in the form: 
expression  ; 

     Usually expression statements are assignments or 
function calls. 

ex.  int value; 
          int value = 14; 

  
4.2 if Statement 

The two forms of conditional statements are: 
if (expression ) statement 
AND 

 if (expression ) statement1  else statement2 
The expression is evaluated in both cases and if it is 
true then the first statement is executed, if it  
evaluates to false statement2 is executed in the 
second case.  

 
4.3 The while Statement 

The while statement has the form: 
while (expression) statement 

The statement is executed repeatedly as long as the  
Expression evaluates to true.  

 
4.4 Return Statement 

The return statement has the form: 
return ; 
OR 

 return (expression ) ; 
In the first case nothing is returned to the caller of  



 

          the function, in the second case the expression is  
          returned.  
 
5. Methods 
__________________________________________ 
 

5.1 Method basics 
A method is a collection of statements that are  
grouped together to perform an operation. A method 
can return a value or nothing when called. The void 
keyword is used to create a method that returns no 
value. If the void keyword is not used when creating  
a method then the method must return a value.  

 
(* Method with return value *)  

int myMethod (int a, int b){ 
(* body *) 

  
return (*int*) 

 } 
 

(* Method with no return value *) 
void myMethod (int a) { 

(* body *) 
} 

 
The name of the method can not be the same as the name 
of the class it is defined in. (See Ch.7 for Classes) 

 
5.2 Overloading Methods 

A method can be overloaded. A class with two or more 
methods with the same name but with a different number 
or type of arguments is said to be overloaded. 
This helps to increase the readability of the program. 

 
A method can be overloaded by either changing the  
number of parameters or by changing their type. 



 
(* Same method name with different types *) 

int myMethod (int a, int b){ 
(* body *) 
return (*int*) 

} 
 

float myMethod (float a, float b){ 
(* body *) 
return (*float*) 

} 
 

(* Same method with different number of parameters *) 
int myMethod(int a, int b){ 

(*body*) 
return (*int*) 

} 
 

int myMethod(int a, int b, int c){ 
(*body*) 
return (*int*) 

} 
 

5.3 The Main Method  
The main method must appear once and only once in the 
program. The main method is the first method to be 
called, and in turn calls all of the other 
methods required to run the program. 
 
Sample main method: 
 
class example {  

void main(char[][] args){ 
(* do something *) 

} 
} 

 
 



 6. Scope 
__________________________________________ 
 
Scope refers to the lifetime and accessibility of a variable. 
The scope of the variable depends on where it is declared.  
 
6.1 Local Variables 

The scope of variables is assumed to be local when 
variables are defined as follows: 
 

void funcname { 
int x = 20; (* x is a local variable *) 
print x; 

} 
 

Local variables can only be used within the method they are  
defined in. The variable is created when the method is  
entered and destroyed once the method is exited.  
 

6.2 Global Variables 
The scope of variables is assumed to be global when  
variables are defined as follows: 

 
int a = 5; (* a is a global variable *) 

 
if (expression ){ 

a = a + 3; 
} 

 
Global variables are declared outside of all functions, 
and are available throughout the entire program. 

 
 
 
 

 
 



 7. Classes 
__________________________________________ 
  

7.1 Class Definitions  
A class is a template for creating different objects  
which defines its properties and behaviors. It can  
contain fields and methods to describe the behavior 
of the object. 

 
class MyClass { 

(*field, constructor and method declarations*) 
 } 

 
The class body contains all the code for the objects 
created from the class. 
 

7.2 Class Fields 
Fields contain data belonging to objects created of 
that class type. 

  
7.3 Constructors 
     Constructors are used to initialize new objects. 

7.3.1 Default constructors 
Default constructors are invoked when no custom 
constructor is defined. The values of the 
object's fields are set to the default values of 
their types.  
  

7.3.2 Custom constructors 
A custom constructor creates an object with 
fields set to specified passed in values.  

 
  
 
 
 
 
 



7.3.3 Standard defining of a class 
 

class myClass { 
 

myClass (int myVar1, int myVar2){ 
myVar1 = …; 
myVar2 = …; 

} 
} 

 
7.4 Inheritance 

Inheritance is the process where one class acquires 
the properties (methods and fields) of another class.  
The subclass is the class which inherits the 
properties of another and the superclass is the class 
whose properties are inherited. Inheritance uses the 
‘extends’ keyword to define the subclass with respect 
to the superclass. 

 
class Car { 
 
void carConstructor(string make, string model){ 

make = “Tesla”; 
model = “Model 3”; 

}  
 
void setPrice(){ 

... 
} 

} 
class SportsCar extends Car { 

(*SportsCar inherits Car class methods and vars*) 
void setHp(){ 
    ... 
}  

} 


