
Harmonica Language Reference Manual
Guihao Liang (gl2520), Jincheng Li (jl4569),

Xue Wang (xw2409), Zizhang Hu (CVN, zh2208)

1. Introduction
Harmonica is a language based on C and borrows ideas from Python / Go. It natively
supports concurrency features and utilities commonly found in scripting languages.

2. Lexical Elements

a. Identifiers
Identifiers are arbitrary strings starting with [a-z A-Z] and followed by [a-z A-Z 0-9]
(not underscores). We recommend camelCase.

b. Key words
if, else, elseif, bool, int, float, string, list, struct,
(comment), return, parallel, channel, import and various
operators defined below.

c. Constants
A constant is a literal numeric or character value, such as 5 or 'm'

i. Integer: decimal integers, [1-9]+[0-9]*
ii. Float: real numbers following the C standard. Examples are 1.4, -0.3, 5e2,

etc.
iii. String: a string instance enclosed with double quotation marks.

3. Data Types

a. Int
Integer type. We only support 32-bit integers, ranging from -2^31 to 2^31-1.

b. Float
Floats are 8-byte double-precision floating point numbers.

c. Boolean
Boolean is just a boolean, true or false.

d. Byte
Byte represents 8-bits of raw data.

e. Stringd
String is a sequence of ascii characters. Its length is limited by maximum integer
value, which is 2^31-1.

f. Tuple[]
A tuple is a sequence of elements (of non-uniform types), with maximum length
2^31-1.

g. List[]
List is a sequence of elements of the same type, with maximum length 2^31-1.

h. Struct
Struct is a composite data structure supporting member variables and methods.

i. Function Types
In Harmonica, function types are defined by the types of their input parameters
and their return type. The notation for function types are simply a list of types
separated by space, where the last type in the sequence is assumed to be the
function’s return type. For example, the type Int Int List[Int] is the type
of a function that takes two integers and returns a list of integers.

4. Expressions and Operators

a. Expressions
The definition of expression is same with C. An expression consists of at least
one operand and zero or more operators.

Operands are typed objects such as constants, variables, and function calls that
return values. Operators specify an operation to be applied on its operands.

b. Assignment Expressions
Assignment expression stores value to the variable.

The standard assignment operator = simply stores the value of its right operand
in the variable specified by its left operand. As with all assignment operators, the
left operand (commonly referred to as the “lvalue”) cannot be a literal or constant
value, it should should be a variable can be modified..

int x = 10;
float y = 45.12 + 2.0;
int z = (2 * (3 + function ()));

struct foo {
int bar;
int baz;
} quux = {3, 4};

You can also use the plain assignment expression to store values of a structure
type.

Also, we support compound assignments, such as +=, -=, *=, /=, %=, <<=, >>=,
>>=, &=, ^=, |=.
a += b is equal to a = a + b;

c. Arithmetic operators
Unary operators are - +, with highest priority, followed by binary + - % operators,
followed by binary + - operations.

d. Comparison operators

Binary logical and relational operators: ==, , >, >=, !=, <=, <. These operators do
shallow comparison, meaning the lvalue and rvalue.

For structure, the equality comparison will compare each field by value, here’s an
instance:
struct float_string {

string str = “str”;
float flt = 1.0;

};
float_string a, b;
a == b is equal to a.str == b.str && a.fl t == b.flt.
Like java, we don’t propagate other non-zero type into bool. That is, in C or C++,
non-zero can represent true , while in our language, you should use a.flt >
0 explicitly.

e. Bit Shifting

The left shift operator should be same to C, that is, new bits added on the right
side will be 0.
fst_operand << snd_operand;
2 << 1;
The right shift >> will be kind of complicated. If the value is signed value, then the
bits added on the left will be 1, otherwise 0.
-2 >> 1;
The zero right shift >>> is borrowed from Java, where the right added value are
restricted to 0.
-2 >>> 1;
If the second operand is greater than the bit-width of the first operand, the
behaviour is undefined.

f. Bitwise logical

Binary operators:
Conjunction &: 11001001 & 10011011 = 10001001
inclusive disjunction I: 11001001 | 10011011 = 11011011
exclusive disjunction ^: 11001001 ^ 10011011 = 01010010

Unary operators:
Negation ~: ~11001001 = 00110110

For these operators, you should only use with char, int types, and for maximum
portability, use unsigned int types.

g. Type Casts

You can use the type cast in the same way of C, note that, there will be precision
lost if you down casts.
int i = (int) 3.5;

Same with C, type casting only works for scalar types, such as int, float or
reference type. The following type casting will fail:
list[int] arr = create(int, 8);
(double[]) arr; // FAIL

h. Array initialization and subscripts
When creating arr ???

i. Function calls as Expressions

Functions which return values can be expressions.
int function(int);
a = 9 + function(9);

j. Comma Operator

You use the comma operator , to separate two expressions. The first expression
must take effect before being used in the second expression.
int x = 1, y = 2;
x += 1, y += x;
The return value of comma expression is the value of second expression. In the
above example, the return value should be 4.

If you want to use comma expression in function, you should use it with
parentheses because in function call, comma has a different meaning, separating
arguments.

k. Member Access Expressions
 You can use access operator dot . to access the members of a structure variable.
 struct foo {

 int x, y;
 };
 struct foo bar;
 bar.x = 0;

l. Conditional expressions

You use the conditional operator to cause the entire conditional expression to
evaluate on either second operand or the third operand. If a is true , then the
expression will evaluate b , otherwise c .
a ? b : c
The return type of b and c should be compatible, meaning the same type in our
language.

m. Operator Precedence

1. Function calls or grouping, array subscripting, and membership access

operator expressions.
2. Unary operators, including logical negation, bitwise complement, unary

positive, unary negative, indirection operator, type casting. When several
unary operators are consecutive, the later ones are nested within the
earlier ones: !-x means !(-x). (right to left)

3. Multiplication, division, and modular division expressions.
4. Addition and subtraction expressions.
5. Bitwise shifting expressions.
6. Greater-than, less-than, greater-than-or-equal-to, and

less-than-or-equal-to expressions.
7. Equal-to and not-equal-to expressions.
8. Bitwise AND expressions.
9. Bitwise exclusive OR expressions.
10.Bitwise inclusive OR expressions.
11.Logical AND expressions.
12.Logical OR expressions.
13.Conditional expressions (using ?:). When used as subexpressions, these

are evaluated right to left.
14.All assignment expressions, including compound assignment. When

multiple assignment statements appear as subexpressions in a single
larger expression, they are evaluated right to left. (right to left)

15.Comma operator expressions.

We took the experience here:
http://www.cs.bilkent.edu.tr/~guvenir/courses/CS101/op_precedence.html

5. Statements

a. Expression Statements
Similar to C, any expression with a semicolon appended is considered as a
statement.

http://www.cs.bilkent.edu.tr/~guvenir/courses/CS101/op_precedence.html

b. if-else statements
if-else statements are in the following forms.
if (statement) { statement }
or
if (statement) { statement } else {statement}
or
if (statement) {statement} [elseif (statement){ statement
}]+ [else {statement}]

c. while statements
Format: while (statement) { statement }

d. for statements
for statements can take the form of
for (statement; statement; statement) {statement}
We also support C++11’s for-each statement style, namely,
for (element : list-like) {statement}
to iterate over any list-like data structure.

e. Blocks
Similar to C, Harmonica uses braces to group zero or more statements. Blocks
can be nested. Variables declared inside a block are local to that block.

f. break, continue
break terminates a while or for control structure;
continue terminates an iteration of the for or while loop and begins the next
iteration.

g. return
Used to end the execution of a function. It should be followed by a return value
matching the declared return type (no return value is needed for a function
returning void).

h. typedef
typedef is used to create new names (aliases) for data types. The syntax is:
typedef oldType newType

i. import
Includes source code from another module (modules are defined by a single
source file, see Program Structure section).

6. Functions

You can write functions to separate parts of your program into distinct sub-procedures.
Every program requires at least one function named main , which is where the program
begins execution.

a. Definition
Functions are defined with the following syntax:
returnType functionName (parameterList) {
 functionBody;
}

A parameter list is a comma-separated list of parameters, where each parameter
consists of a parameter type followed by a parameter name.

b. Calling a function
Functions are called by their name and appropriate parameters. For example:
foo (1, “bar”);

c. Lambda functions

Functions can also be defined with the lambda keyword. However, lambda
functions are restricted to a single line and meant to be used for quick, one-liner
functions just like what python does. For example:
list[int] onePlus = map(lambda a -> (a+1), [1,2,3]);

d. First-class functions

Functions are first-class members in Harmonica, which means that they can be
assigned to variables and passed as parameters just like any other variable.
Type declaration for functions compose of a sequence of types representing the
types of function parameters followed by a single return type. However, we
maintain a bottom line to prevent any abuse of higher than 2^31-1 orders of
functions.

7. Concurrency Support

a. parallel
The parallel keyword spawns multiple child threads that execute the same
function. It takes 2 required parameters: a function, and an iterable collection of
elements. The function would be called on each of the elements in the collection
in a separate thread. An optional 3rd argument can be specified to control the
number of threads spawned from parallel .

b. channel
channels are pipes that make it easy for different threads to pass data around.
You can declare a channel of capacity 5 with channel[T] c = chan(T,
5); . Channels support two basic operations: push and pop. Push inserts an
element into the channel while pop retrieves an element from the channel. There
is no guarantee about the order of elements inserted/retrieved. Push will block if
the channel is full, and pop will block if the channel is empty.

8. Program Structure

A Harmonica source file consists of a list of statements and function definitions. Each
source file defines a module that can be imported in other files. The compiler compiles
several source files, with a single definition of the main function, into an executable
program.

9. Sample Program

int foo(int int void f, bool b) {

print(“Hello, foo.”);
}
int int tuple[int int] f0 = lambda a b -> (a, b);

bool bar(list[int] arr) {

if (List.contains(arr, 42)) {
print(“Hoo, bar.”);

}
}

typedef list[int] boo;
boo aoo, foo;
aoo = [1,2];
foo = [41,42];
list[boo] boos = [aoo, foo];
parallel(bar, boos); #should print “Hoo, bar.” only once

int sum(list[int] lst, int i, int j, channel[int] c) {

int sum = 0;
for (int k = i; k < j; k++) {

sum += lst[k];
}
c.push(sum);

}

int main() {

channel c = chan(int);
List[int] lst = [1,2,3,4];
two threads to sum on different parts of lst
parallel(sum, lst, 0, 2, c);
parallel(sum, lst, 0, 2, c);
return the sum of entire list
return c.pop() + c.pop();

}

