
Daisy Chaussee: dac2183

Anthony Kim: ak3703

Rafael Takasu: rgt2108

Ignacio Torras: it2216

DARN

Language Reference Manual

10/25/16

1 Introduction

2 Types

3 Lexical Conventions

3.1 Identifiers

3.2 Keywords

3.3 Comments

3.4 Operators

3.5 Precedence

4 Syntax

4.1 Expressions

4.2 Declaration and Initialization

5 Control Flow

5.1 Statements and Blocks

5.2 If-Elif-Else

5.3 Loops

5.4 Break and Continue

6 Functions and Program Structure

6.1 Functions and Function Calls

6.2 Scope Rules

6.3 Block Structure

6.4 Recursion

1. Introduction
DARN is a Java-like matrix manipulation and image processing language. Named after the first

initials of our names, DARN allows for efficient linear algebra calculations and easy access to

rows and columns in matrices, both in 2D and 3D. For example, programmers can use DARN to

create a program that finds the eigenvalues and eigenvectors of a matrix. Matrices and tuples

prove essential to DARN ’s image processing capabilities. Using geometric operations and matrix

manipulation, DARN acts like a mini Photoshop, enabling a user to edit images through

saturation, desaturation, lightening, color-correcting, cropping, scaling, resizing, and rotating.

2. Types

Type Description

int 32-bit integer data type, represented as binary
signed 2’s complement bitstring internally

float single-precision floating point number,
floating point constants contain a decimal
point or an exponent or both

char 1 byte character data type

bool 1 byte Boolean data type, 0 represents false
and 1 represents true internally

string string data type made up of chars

tuple An ordered sequence of values

matrix Matrix data type, all elements of a matrix
must be of the same type, only allows int or
float values

3. Lexical Conventions
3.1 Identifiers
An identifier can be made up of upper and lower case letters and digits, but the first character
must be a lowercase letter. Upper and lowercase letters are distinct, so y and Y are two different

names. The underscore “_” counts as a letter. Keywords like if, elif, int, float, etc. may not be
used as variable names.

3.2 Keywords

Keyword Description

for for in a for statement*

if if in an if statement

elif elif strings together multiple if statements

else else in an if-else statement

return return function value

void no type

while while in a while statement

true Boolean literal value for true

false Boolean literal value for false

break Breaks out of a loop

* see section regarding statements

3.3 Comments
Comments are denoted by

/* this is a comment */
/*
 this a
 block comment
*/

3.4 Operators

Operators Description

= assignment

* multiplication

/ division

% modulus

+ addition

- subtraction

> greater than

< less than

>= greater than or equal to

<= less than or equal to

== equality

!= inequality

&& logical AND

| | logical OR

! logical NOT

; statement separator

{ } block separator

() i.e. if (statement)

, separates list of values, esp. in tuples

Matrix Operators Description

, list of values

[] encloses an entire matrix

[[]] double brackets for 3D matrix

[] matrix indexing for rows and columns

() encloses a tuple within a matrix

+, -, *, / matrix scalar operations

3.5 Precedence

Precedence Expressions and Operators

lowest =

 | |

 &&

 ==, !=

 >, <, >=, <=

 +, -

 * , /

 !

highest function and matrix declarations
<func_name>(arg1, arg2…)
<matrix_name>[] []

4. Syntax
4.1 Expressions
Assignment operators are binary operators with right-to-left associativity. Arithmetic expressions
represent mathematical operations with left-to-right associativity.

Matrix Arithmetic Expressions
Matrix scalar multiplication:

M1 = M1 * 3

Matrix multiplication:

M2 = M1 * M1

4.2 Declaration and Initialization
Basic Data Type Declaration and Initialization
All variables must be declared before use. A declaration specifies the variable type and the
variable name. A variable may also be initialized in its declaration.

Examples:
type variable_name;

-OR-
type variable_name = literal;

Variables may also be declared in separate lines, such as

type variable_name;
variable_name = literal;

Examples:

int x = 5;
float y = 1.2;
bool b = true;

Tuple Declaration and Initialization
Tuples must be of the same type. Tuples are declared in the format:

type tuple variable_name;

And initialized in the format:

variable_name = (literal, literal,...);

Tuples may also be initialized in the same line as declaration, for example:

type tuple variable_name = (literal, literal, …);

Matrix Declaration and Initialization
Matrices can only be made up of ints or floats, and all elements must be of the same type.

Declaring a matrix:
To declare a matrix, one must use the format:

 type matrix variable_name;

To initialize:

variable_name = [1, 2, 3][1, 2, 3];

Or, matrices can be declared and initialized in the same line:

type matrix variable_name = [1, 1, 1][1, 1, 1];

Examples:
/* 2D Matrix */

int matrix m2 = [1, 2, 3][1, 2, 3];

/* 3D Matrix */

int matrix m3 = [[(0,0,0), (1,1,1)], [(2,2,2), (3,3,3)]];

5. Control Flow
5.1 Statements and Blocks
Statements are always followed by a semicolon.

int a = 1;
Blocks are surrounded by semicolons { }.

if (condition) {
i++;

}
Blocks don't need to be followed by a semicolon

5.2 If-Elif-Else
The syntax for if-elif-else statements:

if (condition) {

} elif (condition) {

} else {

}
The else statement is not necessary. The if condition will be tried first, then the elif conditions in

order, until one condition matches. If none matches, then it will run the block under else.

5.3 Loops

While Loop

while (condition) {
i++;

}

A while loop will run the code inside the while block as long as the condition is true. The loop

will not start if the condition is not met to begin with. If the condition is something that will

always be true like 1==1 then you will have to break out of the loop with “break;” .

For Loop

for (expr1;expr2;expr3) {

print(i);
}

The first and third expression are assignments or function calls, while the second is a relational

expression. It calls the first expression then makes sure the second condition is true and then

every time the code block is run, the third expression runs. If the second expression is missing

then the loop will run forever until broken.

5.4 Break and Continue

Break

while (condition) {
break;

}

The break will immediately exit you from the innermost loop it is in.

Continue

for (int i=0;i<10;i++) {
if (i == 2) {

continue;
}
print(i);

}

The continue statement causes the loop to go to the next iteration, for example above the loop

will not print the number 2 because it will go to the next iteration before it gets to print.

6. Functions and Program Structure

6.1 Functions and Function Calls

Functions are declared by first stating the return type of the function, and then the function name.
The arguments of the function need to have types:

<return type> <function name>(<arg1 type> <arg1 name>) {

return <return value>;
}
Examples:
1)

int matrix_average(int[][] matrix) {

/* compute average */
return average;

}

2)
/* function that returns void*/
void foo(int[] matrix) {

/* execute */
}

In order to be able to call a function, the function must have been declared and implemented
before. The function call will execute using the given arguments and return the value defined as
the return type during its declaration. All arguments will be passed by value, so a function can
change the values of the parameters within the scope of the function block without affecting the
arguments in the function call.

Some functions that DARN will include:

● Scalar: multiply each entry in matrix by some number

● Multiplication: multiply two or more matrices together

● Concatenation of Matrices

● Gaussian Elimination (i.e. row reduction)

● Eigenvalues Calculation

6.2 Scope Rules
The scope of an automatic variable declared at the beginning of a function is the function in
which the name is declared. Local variables of the same name in different functions are
unrelated.

Examples:
1)

void foo() {
string s = "i am a string";
print(string); /* should print "i am a string" */

}
void bar() {

print(string) /* should result in an error */
}

2)
void foo() {

string s = "hello";
print(s); /* should print "hello" */

}
void bar() {

string s = "world";
print(s); /* should print "world" */

}

6.3 Block Structure
Variables may be defined in a block-structured fashion within a function. Declarations in blocks
hide any variables that are declared outside of the block:

void foo() {

string s = "hello";
int i = 2;
if (i == 2) {

string s = "world";
print(s); /* should print "world" */

}
}

6.4 Recursion
DARN functions may be used recursively:

int factorial(int i) {
if (i < 2) {

return 1;
}
else {

return i * factorial(i-1);
}

}

