
CMAT Language - Language Reference Manual
COMS 4115

Language Guru: Michael Berkowitz (meb2235)
Project Manager: Frank Cabada (fc2452)

System Architect: Marissa Ojeda (mgo2111)
Tester: Daniel Rojas (dhr2119)

Contents
1. Introduction 2

2. Types 2
2.1 Basic Data Types 2

3. Lexical Conventions 3
3.1 Identifiers 3
3.2 Keywords 3
3.3 Constants 4
3.4 Comments 4
3.5 Operators 4
3.6 Precedence 5

4. Syntax Notation 6
4.1 Expressions 6

4.1.1 Primary Expressions 6
4.1.2 Postfix and Prefix Expressions 6
4.1.3 Matrix References 6
4.1.4 Function Calls 6

4.2 Declarations 7
4.2.1 Type Specifiers 7
4.2.2 Matrix Declarations 7
4.2.3 Function Declarations 7

4.3 Initialization 8
4.3.1 int 8
4.3.2 double 8
4.3.3 bool 8
4.3.4 string 8
4.3.5 matrix 9

4.4 Statements 9
4.4.1 Expression Statement 9
4.4.2 Compound Statement 9
4.4.3 Selection Statement 9
4.4.4 Iteration Statement 10

5. Standard Library Functions 10
5.1 Math 10
5.2 Vectors 11
5.3 Matrix 11
5.4 I/O 12

6. Semantics 12

7. Examples 12

8. References 13

1. Introduction
Welcome to the CMAT language reference manual! Our team’s shared interest in mathematics
led us to decide on creating a language centered around matrix manipulation. Matrices are
widely used throughout math, computer science, and physics to represent data and
mathematical equations. CMAT aims to make matrix manipulations and other such linear
algebra operations easier for applications. CMAT is inspired by C and MATLAB, taking the
best parts of both to produce a language with high versatility.

Ideally, we want to allow easy, efficient computation and matrix operations without sacrificing
the structure of a full programming language. Some other potential applications of our
language include finding eigenvalues and eigenvectors, finding the inverse of a matrix,
performing linear transformations on vectors, and solving numerical methods.

2. Types

2.1 Basic Data Types

Primitive Data Types

 Name Description

int Integers are 4 bytes.

bool True and False, 1 and 0.

double 64-bit floating point number

null Absence of data

Supported Data Types

 Name Description

String A series of unsigned bytes where each byte
refers to a character in the ASCII table.

T [int i[, int j]] This can declare a vector or a matrix
consisting of elements of data type T. If only
i is given, it is an i-dimensional vector. If j is
also given, it is an i by j matrix.

3. Lexical Conventions

3.1 Identifiers

Identifiers can be created with any uppercase or lowercase letter and can then be
followed by any arrangement of uppercase or lowercase letters, numbers and
underscores.

3.2 Keywords

The following identifiers are reserved for the use as keywords and may not be used
otherwise:

Basic Keywords

 Name Description

for Iteration until condition not met

while Loops until condition is not met

if Dynamic if accepts 1/0/True/False/null

else Paired with an ‘if’ statement

elseif Paired with an if statement. Dynamic
elseif accepts 1/0/True/False/null

break Will break out of the closest enclosing
for or while loop

main First function executed in a program

return Returns a value of a function

void Nonexistent value. Used as a data
type for functions that do not return
anything.

const Denotes a constant identifier

true 1

false 0

3.3 Constants

A constant is declared by using the const keyword. A constant follows the same
convention as all identifiers, but every character is capitalized.

3.4 Comments

/* */ Block comments

// Single line comments

3.5 Operators

Operators

 Name Description

= Assignment operator

+, - , *, / Arithmetic operators

++ Increment operator

-- Decrement operator

> Greater than operator

< Less than operator

>= Greater than or equal to operator

<= Less than or equal to operator

== Returns 1 if values are equal, else
returns 0

!= Returns 0 if values are equal, else
returns 1

&& Logical AND operator

|| Logical OR operator

! Logical NOT operator

Matrix Operators

 Name Description

+, - , * Matrix arithmetic operations and
scalar arithmetic operations

[x:y:z] Initialize a 1-by-n matrix from x to z
with a delimiter of y

[x] Access specific element in vector

[x,:] Access specific row of 2D matrix

[:,y] Access specific column of 2D matrix

[x,y] Access specific element in 2D matrix

<,<=,>,>= If 2 matrices have the same
dimensions, these operators compare
element by element

3.6 Precedence

 Operators Precedence

! Highest

* , /

+ , -

< , > , <= , >=

== , !=

&&

||

= Lowest

4. Syntax Notation

4.1 Expressions

4.1.1 Primary Expressions

Primary Expressions are the most basic expressions which make up more

complex expressions. These include identifiers, constants, strings, or
expressions in parentheses.

4.1.2 Postfix and Prefix Expressions

Postfix Expressions in CMAT include the following:

expression[expression]
expression(parameter-list)
expression.identifier
expression++
expression--

Prefix Expressions include:

++expression
--expression

4.1.3 Matrix References

Matrix elements are referenced through postfix expressions of the form:

expression[expression]

where the first expression is the identifier of an initialized matrix. In the case of a
1-dimensional matrix, the expression in brackets is simply an integer value. For a
2-dimensional matrix, the expression in brackets is a pair of comma separated
values. The values can either be two integers or an integer and a colon
(reference matrix operators in 3.4).

Additionally, a matrix can be referenced by its identifier if it is part of a proper
matrix expression. In other words, it is preceded or followed by one of the matrix
operators.

4.1.4 Function Calls

Function calls are postfix expressions of the form:

expression(parameter-list)

where expression is an existing function identifier and the optional parameter-list
consists of comma-separated expressions that are passed as the function
parameters.

4.2 Declarations

4.2.1 Type Specifiers

Type specifiers:
● void
● String

○ String identifier; //declaration of a string
● Int

○ int identifier; //declaration of an int
● double

○ double identifier; //declaration of a double

4.2.2 Matrix Declarations

T [int i[, int j]] name Define a vector/matrix by
stating datatype brackets and
name. Inside brackets can be
one number for a vector, or
two numbers for a matrix.

A matrix declaration follows the format seen above. This format can define a
vector (1D array) or a matrix (2D array). In order to declare a matrix, we first
state the primitive data type that will make up the vector/matrix. Then we have
brackets with either one number inside or two numbers inside separated by a
comma. If only one number is stated then a vector is created with a length of the
number. If two numbers are stated then a matrix is created with the following
size number by number matrix. The numbers in this declaration must be
positive. The vector/matrix created is initialized to 0. Then, we specify the name
of the vector/matrix which must start with a letter character followed by any
number of characters including _.

4.2.3 Function Declarations

T name (T arg, ...) { statements } Define a function by
stating return type,
name of function,
and arguments in
parenthesis. Braces
are followed with
statements inside.

To declare a function, we define the return type by stating the data type. Then,
we specify the name which must start with a letter character followed by any
number of characters including _. After, in parentheses are formal arguments, if
any. Formal arguments are stated by writing the data type of the argument and
the identifier. Multiple arguments are separated by commas. Then, braces are
written in with statements in between the braces.

4.3 Initialization

When an object is declared, the declaration may include an initial value. This
declaration has “=” with an initial value following it for the object. If a declaration does
not include an initial value, the object (not a matrix) is initialized to null. If a
vector/matrix is declared without an initial value, the vector/matrix is initialized as a
zero vector/matrix. The following subsections explain how to initialize an object during
and after a declaration.

4.3.1 int

During a declaration, a “=” with an initial integer value follows the declaration.
After a declaration, the identifier used to declare the int will have a “=” with an
initial integer value following the identifier.

4.3.2 double

During a declaration, a “=” with an initial integer value or floating-point number
follows the declaration. After a declaration, the identifier used to declare the
double will have a “=” with an initial integer value or floating-point number
following the identifier.

4.3.3 bool

During a declaration, a “=” with an True or False follows the declaration. After a
declaration, the identifier used to declare the bool will have a “=” with an initial
True or False following the identifier.

4.3.4 string

During a declaration, a “=” with any character in the ASCII table follows the
declaration. After a declaration, the identifier used to declare the string will have
a “=” with any character in the ASCII table following the identifier.

4.3.5 matrix

A declaration is followed by a “=” with brackets specifying the elements in the
matrix. If the matrix is one dimensional, then the elements can be stated with
commas or a space separating them in a bracket. The number of elements in
the initialization must equal the size of the 1D matrix (vector). If the matrix is 2D
then the elements for each row are specified with commas or spaces

separating. Rows are separated by a semicolon. These elements must also be
in brackets like the following:

matrix1 = [1 2 3 4]; //1D matrix (vector)
matrix2 = [1 2 3 4; 5 6 7 8]; //2D matrix (size 2x4)

4.4 Statements

4.4.1 Expression Statement

Expression statements consist of standalone expressions which are executed
before continuing to the next statement. An expression statement in CMAT is
of the form:

expression;

These are usually assignments or function calls. Expression statements may be
empty if represented only by a semicolon.

4.4.2 Compound Statement

A compound statement (also known as a “block”) consists of several statements
that can be used where a single statement is expected. For example, the body of
a function definition is a compound statement. Compound statements are of the
form:

{ declaration-list statement-list }

declaration-list and statement-list are both optional meaning that it is possible to
have an empty compound statement. Variables declared within compound
statements do not live outside of that “block.”

4.4.3 Selection Statement

A selection statement chooses a specific flow to follow based on whether a
condition is met or not. In CMAT, selection statements include if and else
statements in the following forms:

if (expression) statement
if (expression) statement else statement

expression must be of bool or arithmetic type so that the program can evaluate
whether a condition is met or not. The if statement is executed when expression
does not evaluate to false, null, or 0. Otherwise, the statement within else is

executed. An else cannot stand by itself and when used, it is paired with the last
Encountered else -less if at the same block nesting level.

4.4.4 Iteration Statement

Iteration statements are meant for looping in the following forms:

while (expression) statement
for (expression; expression; expression) statement

For while loops, statement is executed as long as expression meets the same
conditions required for an if statement to be executed.

For for loops, the three expressions within the parentheses specify at the
very beginning the number of iterations that the loop will iterate over. The first
expression initializes a value of any type. The second expression is evaluated in
the same manner as an if condition. The statement will continue to be executed
as long as this condition is met (similar to a while loop). The third expression is
evaluated after the current iteration is executed in order to re-initialize the loop.

5. Standard Library Functions

5.1 Math

double PI, double EUL Numerical values of
= 3.14159265…π

e = 2.71828182...

double sqrt(int|double x) Returns the square root of the
int or double x

double nroot(int|double x, int n) Returns the nth root of int or
double x

double pow(int|double x, int n) Returns as a doublexn

double cos(double x) Returns cosine of double x (in
radians) as a double

double sin(double x) Returns sine of double x (in
radians) as a double

5.2 Vectors

A vector, in CMAT, is simply a 1-dimensional matrix. Vectors are treated as row vectors.

int size(T [i] x) Returns the dimension of vector x as
an int

double norm(T [i] x) Returns the normal Euclidean length
of vector x (square root of the sum of
the components squared) as a
double

double dot(T [i] x, T [i] y) Returns the dot product of two
same-dimensional vectors x and y

T [j] roots(T [i] x) For a vector x representing a
polynomial

x x .. x cf(x) c= n
n + cn−1

n−1 + . + c1 + 0
as x = [], return a, c , ..., c , ccn n−1 1 0
vector of the roots of f(x)

5.3 Matrix

T typeof(T [i,j] A) Returns the data type that matrix A
holds

double det(T [n,n] A) Returns the determinant of square
matrix A

T [n,n] identity(int n) Returns the n by n identity matrix

T [j,i] transpose(T [i,j] A) For an i by j matrix, returns the
transpose a j by i matrix

T [n,n] inverse(T [n,n] A) If it exists, returns the inverse of a
square matrix A
Else, return null

T [n] eigenvalues(T [n,n] A) Returns the eigenvalues of a square
n by n matrix A in an n-dimensional
vector

T [n,n] eigenvectors(T [n,n] A) Returns the eigenvectors of a square
n by n matrix A in an n by n matrix
with each row corresponding to an

eigenvector

5.4 I/O

void print_line(String s) Prints string s to stdout and then prints
a newline

String get_line() Gets a ‘\n’-terminated String from stdin

String itos(int i) Returns the int i as a String

String dtos(double d) Returns the double d as a String

String btos(bool b) Returns the bool b as either “true” or
“false”

double itod(int i) Returns the int i cast to a double (e.g.
int 1 → double 1.0

int dtoi(double d) Returns the double d cast to an int by
truncating the fractional part (e.g.
double 1.8 → int 1)

6. Semantics
In CMAT, every statement must end with a semicolon “;”. Code blocks in control flow

statements (if, else, elseif, for, while) must always be enclosed in braces. Braces provide more
visual understanding of scope.

The program begins with a main function in a file. The main function must always have
a return type int. The main function calls other functions defined which in turn may call other
functions or files. When a function is called the number actuals must match the number of
formal arguments in the function declaration. If a function has a return type, the end of the
function must return type specified in the function declaration. If a return object from a function
is being stored in a variable, the variable type must match the type of the return object from the
function.

7. Examples
int main() {

print_line(“2D Rotation”);
int [2] x1, int [2] x2; // Declares 2 2D vectors
int [2,2] rot = [0, -1; 1, 0]; // Declares and initializes

a

 // 2x2 rotation matrix for
// theta = 90°

x1 = [1/sqrt(2),1/sqrt(2)]; // Initializes x1 to be unit
// vector in direction of
// theta = 45°

x1 = 2*x1; // Multiply x1 by 2
x2 = rot*x1; // Initialize x2 to be 2*x1

// rotated by 90°. Should be
// x2 = [-2/sqrt(2),2/sqrt(2)]

return 0;
}

T [j,i] transpose(T [i,j] M) {

typeof(M) [j,i] tr; // Create a j by i matrix
// to hold the transpose

int ii, jj;
for(ii=0; ii < i; ii++) {

for(jj=0; jj < j; jj++) {
tr[jj, ii] = M[ii, jj]; // Set every element

// tr[j,i] to M[i,j]
}

}
return tr;

}

8. References
Kernighan, Brian W., and Dennis M. Ritchie. "Appendix A - Reference Manual." The C

Programming Language. Englewood Cliffs, NJ: Prentice Hall, 1988. N. pag. Print.

