
 

Blox  
Language Reference Manual 

v1 
October 26, 2016 

Programming Languages and Translators 
Stephen A. Edwards 

 
 

 

 

Team Members 
Name UNI Role 

Paul Czopowik pc2550 Manager 

Naeem Bhatti bnb2115 Language Guru 

Tyrone Wilkinson trw2119 System Architect 

Jonathan Voss jcv2130 Tester 

 
  

 



 

Table of Contents 
Table of Contents 2 

Introduction 4 

Lexical Elements 4 
Identifiers 4 
Keywords 4 
Constants 4 

Integer Constants 5 
Real Number Constants 5 

String Constants 5 
Operators 5 

Precedence of Operators 7 
Separators 8 
White Space 8 
Comments 8 

Data Types 8 
Primitive Types 8 
Language Specific Types 8 
Block 9 
Frame 9 

Declaring and Initializing Frames 9 
Structure 10 
Array 10 
Set 11 

Expressions 11 

Scope 11 

Statements 12 
Block statements 12 
Conditional statements 12 
Loop statements 13 

For loop 13 
While loop 13 

Jump statements 13 

Functions 14 
Declaration 14 
Calling 14 

2 



 

Built-in Functions and Keywords 14 
Join 14 
Build 15 
Create 15 

Sample Program 15 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3 



 

Introduction 
This is a reference manual for the Blox programming language which documents the current standards. 
 
Blox enables the programmer to solve a structural problem; given a set of resources and a mapping of 
constraints on those resources, it outputs the set of all possible solutions that conform to those 
mappings in the ​Additive Manufacturing File​ format (AMF) which is used for 3D printing.  
 
The underlying problem faced in such a situation is how to: 

1. Give programmers the freedom to actualize any object they desire. 
2. Ensure the compiler has the capacity to interpret and manipulate such objects. 

 
Blox resolves this dilemma by introducing the fundamental concepts around which the language is built: 
the Structure,Frame and Block. 

Lexical Elements 
This chapter describes the lexical elements that make up Blox source code after preprocessing. These 
elements are called tokens. There are five types of tokens: ​identifiers​ , ​keywords​ , ​constants​ , ​operators​ , 
and ​separators​ . White space, sometimes required to separate tokens, is also described in this chapter. 

Identifiers 
Identifiers are sequences of characters used for naming variables, functions, new data types, and 
preprocessor macros. You can include letters, decimal digits, and the underscore character ‘_’ in 
identifiers. Lowercase letters and uppercase letters are distinct, such that foo and FOO are two different 
identifiers. 

Keywords 
Keywords are special identifiers reserved for use as part of the programming language itself. You 
cannot use them for any other purpose. Here is a list of keywords recognized in Blox: 

 

if  else  for  while  do  break  switch  case  default  return  void  NULL  

int  float  char  bool  

Create  Build  Rule  Join  Detach  Frame 

Red  Orange  Yellow  Green  Blue  Violet  Indigo 

Constants 
A constant is a literal numeric or character value, such as 5 or 'm'. All constants are of a particular data 
type; you must use type casting to explicitly specify the type of a constant. There are integer constants, 
real number constants, character constants, and string constants.  

4 



 

Integer Constants 
An integer constant is a sequence of digits assumed to be in base 10, so no prefixes are used.  
 

0123 

-45 

9 

Real Number Constants 
A real number constant is a value that represents a fractional (floating point) number. It consists of a 
sequence of digits which represents the integer (or “whole”) part of the number, a decimal point, and a 
sequence of digits which represents the fractional part. Either the integer part or the fractional part may 
be omitted, but not both. ​The exponent can be either positive or negative. ​ ​Real number constants 
cannot be followed by e or E and an integer exponent. 
 

4.2 

.5 

0.88 

String Constants 
A string constant is a sequence of zero or more characters, digits, and escape sequences enclosed 
within double quotation marks. A string constant is of type “array of characters”. All string constants 
contain a null termination character (\0) as their last character. Strings are stored as arrays of 
characters, with no inherent size attribute. The null termination character allows string-processing 
functions know where the string ends. 

Operators 
Blox supports three types of operators. 
 

1. Assignment operators 
2. Comparison operators 
3. Logical operators.  

 
Assignment operators store values in variables. The standard assignment operator ​=​ simply stores the 
value of its right operand in the variable specified by its left operand. As with all assignment operators, 
the left operand cannot be a literal or constant value. 
 

Comparison operators are used to determine how two Frames relate to each other: are they structurally 
equivalent, are they composed of the same number of blocks, does one have more blocks than the 
other, does one have less blocks than the other, and so one, with the remainder only dealing with the 
number of blocks a Frame is composed of as well. When you use any of the comparison operators, the 

5 



 

result is of type bool either true or false. The equal-to operator ​==​ tests two Frames for structural 
equality. The result is true if the Frames are equal, and false if the Frames are not equal. 
 

if​ (reddy1 == reddy2) 
print("reddy1 is equal to reddy2"); 

else 

print("reddy1 is not equal to reddy2"); 

 
The not-equal-to operator ​!=​ tests two Frames for structural inequality. The result is true if the Frames 
are not equal, and false if the Frames are equal.  

 

if​ (reddy1 != reddy2) 
print("reddy1 is not equal to reddy2"); 

else 

print("reddy1 is equal to reddy2"); 

 
The dot-equal-to operator ​.=​ only determines whether or not two Frames have the same number of 
Blocks. The result is of type bool, true if the Frames have equal number of Blocks, and false if the 
Frames have an unequal number of Blocks. 

 
if​ (reddy1 .= reddy2) 

print("reddy1 is superficially equal to reddy2"); 

else 

print("reddy1 is not superficially equal to reddy2"); 

 

Beyond equality and inequality and block-equality, there are operators you can use to test if one Frame 
has less blocks, more blocks, blocks less-than-or-equal-to, or blocks greater-than-or-equal-to another 
Frame. 
 

if ​(reddy1 < reddy2)  
print("reddy1 has less blocks than than reddy2");  

if ​(reddy1 <= reddy2)  
print("reddy1 has blocks less than or equal to reddy2");  

if​ (reddy1 > reddy2)  
print("reddy1 has more blocks than reddy2");  

if​ (reddy1 >= reddy2)  
print("reddy1 has blocks greater than or equal to reddy2"); 

 
 
  

6 



 

Logical operators test the truth value of a pair of operands. All non-zero expressions are considered 
true, while any expression evaluating to zero is considered false. 

Operator Name Example 

= Assign x = 6;    /* The value of variable x is now 6 */ 

+ Addition y = x + 4;    /* The value of y is now 10 */ 

- Subtraction z = y - x;    /* The value of z is now 4 */ 

* Multiplication a = x * y;    /* The value of a is now 24 */ 

/ Division b = y / 5;    /* The value of b is now 2 */ 

^ Exponentiation c = z ^ b;    /* The value of c is now 16 */ 

% Modulo d = c % x;    /* The value of d is now 4 */ 

++ Increment e = c++;    /* The value of e is 16 and c is now 17 */ 

-- Decrement f = c--;    /* The value of f is 17 and c is now 16 */ 

&& Logical AND expr1 && expr2    /* Returns true only if both expr are true, 
otherwise it returns false */ 

|| Logical OR expr1 || expr2    /* Returns true if one or both expr are true, 
if both are false it  returns false */ 

! Logical NOT !expr1    /* Returns true if expr1 is false, returns false if 
expr1 is true */ 

== Equal To z == d    /* Returns true */ 
x == y    /* Returns false */ 

!= Not Equal To z != d    /* Returns false */ 
x != y    /* Returns true */ 

> Greater Than x > y    /* Returns false */ 
a > b    /* Returns true */ 

>= Greater Than or Equal 
To 

a >= b    /* Returns true */ 
z >= d    /* Returns true */ 

< Less Than x < y    /* Returns true */ 
a < b    /* Returns false */ 

<= Less Than or Equal 
To 

x <= y    /* Returns true */ 
z <= d    /* Returns true */ 

[ ] Access Array Element array[0]          /* Returns first element in array */ 

. Access Object object​.​mem    /* Returns member mem in object */ 

7 



 

Member 

Precedence of Operators 
[ ]    . 

++    --    ! 

*    /    %    ^ 

+    - 

>    >=    <    <= 

==    != 

&& 

|| 

= 

Separators 
A separator separates tokens. White space (see subsection) is a separator, but it is not a token. The 
other separators are all single-character tokens themselves: 
 

(  )  <  >  ,  ;  

White Space 
White space is the collective term used for several characters: the space character, the tab character, 
the newline character and the horizontal tab character. White space is ignored, and is therefore 
optional, except when it is used to separate tokens. 

Comments 
The characters ​/*​ introduce a comment, which is terminated with the characters ​*/​. Block comments 
and nested comments are supported.  

Data Types 

Primitive Types 
int​  ​float​  ​char​  ​bool 

 
Primitive types are predefined in the Blox language as the most basic data types available, and are 
named by their keywords. The numeric type include int, float, and char and boolean type holding either 
true or false. 
 

int​       from -2147483648 to 2147483647, inclusive 
float​     from 3.402,823,5 E+38 to 1.4 E-45, inclusive 
char​      from 0 to 65535 

8 



 

bool​      ​true​ or ​false 
 

Language Specific Types 
The language has three hierarchical levels of abstraction and at each layer is an object that composes 
its “parent”. Structure is an object that contains 0 or more Frames and Frames are objects that contain 
1 or more Block. A Structure is created and Frames can be joined to this Structure, constructing or 
building an element, thus it keeps track of the Frames and how they are joined. A Frame is a set of 
adjacent Blocks and keeps track of which face of each Block is available for a join. 

Block 
A Block is the fundamental abstract object of the language which serves the construction of Frames. A 
conceptual illustration is provided below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
A Block is a six element bit-vector and is aware only of which sides it has available (open) for joining 
and which sides are already joined or prohibited from joining by rules (closed). To accomplish this, a 
Block is stored as an boolean array of 6 elements where TRUE represents open and FALSE closed. 
The array is also offset by one so it is referred to in the range of 1-6 rather than the standard 0-5. 
Blocks are the only object to hold an orientation field: T, Bo, L, R, F, Ba signifying top, bottom, left, right, 
front, and back, respectively. Orientation is specified when performing Join operations. 

Frame 
A Frame is a data structure composed of a set of ​n​  blocks, were ​n > 0 ​ and it is specified at declaration. 
Frames are characterized by three spatial dimensions: ​x, y, ​ and ​z​ . Additionally, the sRGB standard 
which utilizes the ITU-R BT.709 primaries, or one of seven built-in color keywords can be used to 
specify color. 

9 



 

Declaring and Initializing Frames 
You declare a Frame and initialize its contents by using the Frame keyword, specifying its dimensions 
and its color, and then specifying its name. Declaration and initialization must be done together. Given 
below are two examples that both declare and initialize equivalent, red, 2 x 2 Frames, the latter 
example using optional values from the sRGB standard. 
 

Frame​<2,2,1,Red> reddy1; 
Frame​<2,2,1,1,0,0> reddy2; 
 

You don’t always have to declare and initialize a Frame before the main body of a program in order to 
use it. See the example program at the end of the manual. The syntax used to properly declare and 
initialize, or create, Frames must be one of the following: 

 
Frame​<dimension x,dimension y,dimension z,r value,g value,b value> 
Frame​<dimension x,dimension y,dimension z,color> 

Structure 
A Structure is an object that contains a set of attached Frames and a mapping of Join relationships 
between the Frames. It also contains a three-dimensional array that represents all the blocks that are in 
the Structure. Join operations are allowed by joining a Frame to a Structure. Initially, the first Frame is 
joined into an empty Structure. The Structure is an object that contains all the Frames joined to it and 
information on how they are joined. A conceptual illustration is provided below. 
 

Structure​ Table 
{ 

Frames 

{ 

Frame top<3,3,1>; 

Frame leg1<1,1,3>; 

Frame leg2<1,1,3>; 

Frame leg3<1,1,3>; 

} 

 

Joins 

{ 

top(1,1,1, b) with leg1(1,1,3, t); 

top(1,3,1, b) with leg1(1,1,3, t); 

top(3,1,1, b) with leg1(1,1,3, t); 

} 

 

BlockArray 

{ 

Block blockArray[3][3][3] 

} 

} 

10 



 

Array 
Arrays are declared by specifying the data type for its elements, its name, and then the number of 
elements it can store enclosed within a set of brackets. Array sizes are constant and indices start at 
value 0. Arrays can be initialized during or after declaration by referencing the index. 
 
Syntax 

type arrayName [arraySize]; 
type arrayName [arraySize] = {value1, value2...}; 

 
Example 

int​ x[2]; 
int​ size[5] = {1, 10, 4, 5, 0}; 
size​[0] = 10; 

 

Set 
Set supports add and remove functions. 
 
Syntax 

Set<data-type> identifier; Declaration 
identifier.add(identifier); Adding an element 
identifier.remove(identifier); Removing an element 

 
Example 

Set<​Frame​> resources; 
resources.add(frame1); 
resources.add(frame2); 
resources.remove(frame2); 

 

Expressions 
An expression consists of at least one operand and can include separators and operators. When an 
expression has subexpressions, the innermost expressions are evaluated first. 
 
Example 

( x + ( ( 5 * 74 ) / 37 ) - 4 ) 
 

In the above example, 5 * 74 evaluates to 370. Then, 37 is divided from 370, resulting in 10. 4 is 
subtracted from 10, resulting in 6, which is finally added to x. The outermost parentheses are not 
required.  

11 



 

Scope 
Blox is a block-structured language, meaning the lexical scope of variables do not extend beyond the 
pair of curly braces in which they are declared. 
 

Example 
{ 

x = 5;  

{ 

x = 1; 

y = 2; 

} 

print(x); /* the value of x is 5 */ 

}  

Statements 
All statements must end with the semicolon ​;​ character. 
 
Grammar 
statement: 

block-statement 

loop-statement 

jump-statement 

conditional-statement 

Block statements 
Syntax 

{statement1; statement2; statement3; … } 
 

Example 
{ 

x = 1; 

y = 2; 

} 

Conditional statements 
Syntax 

if​ (expression) {statements} 
if​ (expression) {statements} ​else​ {statements}  
if​ (expression) {statements} ​else if​ (expression) {statements} ​else​ {statements}  

12 



 

 
Example 

if​ (x == y) {​return​ x+1;} 
if​ (x == y) {​return​ x+1;} ​else​ {​return​ x-1;} 
if​ (x == y) {​return​ x+1;} ​else​ ​if​ (x < 1) {​return​ x-1;} ​else​ {​return​ 0;} 

Loop statements 

For loop 
Syntax 

for​ (expression; expression; expression) { statements } 
 
Example 

int ​i; 
for​ (i = 0; i < 10; i++) 
{ 

print(​"​Hello ​"​); 
print(​"​World!​"); 

} 

While loop 
Syntax 

while​ (expression) { statements } 
 

Example 
int x = 0; 

while​ (x < 10) 
{ 

print(​"​Hello ​"​); 
print(​"​World!​"); 
x++; 

} 

Jump statements 
Syntax 

switch​ (expression)  
{ 

case constant-expression : statement 
case constant-expression : statement 
... 
default : statement 

} 

13 



 

 
Example 

switch​ (result) 
{ 

case​ true: 
 x = x + 1;  

 ​break​; 
case​ false: 

 x = x - 1;  

 ​break​; 
default​:  

break​; 
return​ x; 

} 

Functions 

Declaration 
Syntax 

Return-type​ identifier (parameter-list) {} 
Parameter list = identifier parameter-list 

 
Example 

int​ add(​int​ x, ​int ​y) 
{ 

int​ a = x + y; 
return​ a; 

} 

Calling 
A function returns one data type or void. The function can be used as an expression itself. 
 
Syntax 

Return-type Function-name (parameter-list); 
 
Example 

removeUser(“Paul”, 100);         /* unused return statement */ 

User Paul = removeByID(12345);   /* assign returned user object to Paul */ 

if​ (pingIsOK(“192.168.1.1”)) {return true}; /* evaluated as a condition */ 

14 



 

Built-in Functions and Keywords 

Join 
Join​ ​is a built in function which allows for connecting of Frames to produce a native Structure​ ​object. 
However, Frames may only be joined to Structures. Joining additional Frames to an existing Structure 
adds the Frame to the collection of Frames within that Structure. This also creates a join relationship 
entry.  
 
Syntax: 

Join (Structure-identifier, Frame-identifier<x,y,z>); 
Join (Structure-identifier<x,y,z>, Frame-identifier<x,y,z>); 

 
Example: 

Create​ ​Structure​ A; 
Create​ ​Frame​<1,1,1> X; 
Create​ ​Frame​<1,3,1> Y; 
Join​(A, X<1,1,1>);          /* A was empty, now has one frame */ 
Join​(A<1,1,1>, Y<1,3,1,U>); /* A now joins X and Y, both becoming A */ 

Build 
The built-in function Build takes two parameters: Set<Frame> and Set<Rule> and generates the set of 
all possible objects that can be constructed using the set of Frames, abiding by the mapping of Rules to 
those Frames. If a Map value of ​NULL ​is passed, Build will abide by no rules except 
 

Build​(resources, rules); 

Create 

The keyword Create dynamically allocates heap memory for a Frame or Structure only. Create takes a 
3D position vector and a name. Optionally, a color can be specified. Create Frame<x,y,z> Frame 
dynamically allocates heap memory for n = x * y * z grid of Blocks. For example, Create Frame<3,1,1> 
will allocate memory for 3 * 3 * 1 = 9 Blocks.  
 

Create​ ​Frame​<3,3,1,green> base; 
Create​ ​Frame​<10,100,4> X; 

 
 

 
 

15 



 

Sample Program 

void ​main​() 
{ 

/* make 9-block grid */ 
Frame​<3,3,1,green> base; 
 
/* make resources */ 
Set<​Frame​> resources; 
for​ (int i = 0; i < 3; i++) 

resources.add(​Frame​<1,1,3>); 
 
/* add the base to the set of resources */ 
resources.add(base); 
 
/* make rules for some/all resources */ 
Set<​Rule​> rules; 
 
Rule​ rule1 = ​Join​(base<1,3,1,U>, resources[0]<1,1,1,D>); 
rules.add(rule1); 

 
/*  
 * using a set of given resources, build the set of objects possible that  
 * conform to rules 
 */ 
Build​(resources, rules); 
 
/* display output in AMF */ 
Display​; 

} 
 
base:        res: 

 
 
 
 
 
 
 
 

Rule1: Build (showing two possible results):  

 
 
 

  
 
 

16 


