
 

 

 

 

Programming Languages and Translators 

Language Reference Manual 

ART: Animation Rendering Tool 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Brett Jervey  -  baj2125 

Gedion Metaferia  -  gym2103 

Natan Kibret  -  nfk2105 

Soul Joshi   -  srj2120 

 
October 26, 2016 

 

 

  



 2 

 
Table of Contents 
 

1	 Language Reference Manual ................................................................................. 3	
1.1	 Lexical Conentions .................................................................................................... 3	

1.1.1	 Tokens .................................................................................................................. 3	
1.1.2	 Comments ............................................................................................................. 3	
1.1.3	 Identifiers .............................................................................................................. 3	
1.1.4	 Keywords .............................................................................................................. 3	
1.1.5	 Literals .................................................................................................................. 4	

1.2	 Meaning of Identifiers ............................................................................................... 4	
1.2.1	 Basic Types ........................................................................................................... 4	
1.2.2	 Derived Types ....................................................................................................... 5	

1.3	 Conversion ................................................................................................................ 5	
1.4	 Operators .................................................................................................................. 5	

1.4.1	 Arithmetic Operators ............................................................................................ 6	
1.4.2	 Relational operators .............................................................................................. 6	
1.4.3	 Equality Operators: .............................................................................................. 7	
1.4.4	 Assignment operator: ............................................................................................ 7	
1.4.5	 Increment/decrement operators: ........................................................................... 7	
1.4.6	 Unary Operators: .................................................................................................. 8	
1.4.7	 Logical Operators: ................................................................................................. 8	
1.4.8	 Subscript Operator: .............................................................................................. 8	
1.4.9	 Scope Operator: .................................................................................................... 8	
1.4.10	 Pass by Reference Operator: ............................................................................. 8	

1.5	 Functions .................................................................................................................. 9	
1.5.1	 Function Definition ............................................................................................... 9	
1.5.2	 Function Calls ....................................................................................................... 9	
1.5.3	 Builtin-functions ................................................................................................. 10	

1.6	 Structs and Shapes ................................................................................................. 10	
1.6.1	 Struct Definition ................................................................................................. 10	
1.6.2	 Member Access ................................................................................................... 10	
1.6.3	 Defining Member Functions ................................................................................ 11	
1.6.4	 Defining Constructors and Struct Initialization .................................................. 11	
1.6.5	 Shapes: ................................................................................................................ 12	

1.7	 Statements .............................................................................................................. 12	
1.7.1	 Expression Statements ........................................................................................ 13	
1.7.2	 Compound Statements ........................................................................................ 13	
1.7.3	 Selection Statements ........................................................................................... 13	
1.7.4	 Iteration Statements ........................................................................................... 13	
1.7.5	 Jump Statements: ............................................................................................... 15	

1.8	 Variable Declaration ............................................................................................... 16	
1.9	 Program Structure: ................................................................................................. 16	
1.10	 Scoping rules and Object Lifetimes: ........................................................................ 16	
1.11	 Grammar ................................................................................................................ 17	

 
 



 3 

1 Language Reference Manual 

1.1 Lexical Conentions 

An ART program consists of a single source file with function, method, shape, struct definitions 
and variable declaration. All programs must define a main function which serves as an entry point 
to the program. 

1.1.1 Tokens 

The language is composed of the following types of tokens: identifiers, keywords, literals, operators 
and other separators. 

1.1.2 Comments 

ART allows for both block and single line comments. The characters /* introduce a block comment, 

which terminates with the characters */. Block comments do not nest. The characters // introduce 

a line comment which terminates at a new line character. Comments can not occur within character 
literals. Example below: 
 

/* double line comment here  
Double line comment continues here*/ 
// single line comment here 

1.1.3 Identifiers 

A valid identifier consists of any sequence of letters (an underscore counts as a letter) and digits. 
An identifier cannot begin with a digit. They can be of any length and case. Identifiers are case 

sensitive; in particular “abc“ is not the same as “Abc”. 

1.1.4 Keywords 

The language has the following reserved words that may not be used for any other purpose: 

 

User Defined Structures: 

 struct 
 shape 
 
Control Flows: 

 timeloop 
 frameloop 
 for 
 while 
 if 
 else 
 return 
 continue 
 break 
 



 4 

Types: 

 char 
 double 
 int 
 void 
 vect 

1.1.5 Literals 

An integer literal can be one of the following: 

- A decimal literal: a sequence of digits that does not begin with a zero.  

- An octal literal: a sequence of digits that begins with zero and is composed of only the 

digits 0 to 7.  

- A hexadecimal literal: ‘0X’ or ‘0x’ followed by a sequence of case insensitive hex digits.  

 
Character literals can be one of the following: 

- A printable character in single quotes. E.g: ‘x’  
- One of the following escape sequences: ‘\n’, ‘\t’, ‘\v’, ‘\b’, ‘\r’, ‘\f’, ‘\a’, 

‘\\’, ‘’\?’, ‘\`’ , ‘\’’, ‘\”’  

- A backslash followed by 1,2 or 3 octal digits in single quotes: E.g: ‘\0’  
- A backslash followed by the letter x and a sequence of hex digits in single quotes: E.g: 

‘\x7f’ 
 
For the hex and octal escape sequences, the behavior is undefined if the resulting value exceeds 
that of the largest character. 
 

A floating literal consists of an integer part, a decimal point, a fraction part, an e or E, and  an 

optionally signed integer exponent.  Either the integer part or the fraction part (not both) may be 

missing; either the decimal point or the e and the exponent (not both) may be missing. 

 
A vector literal is two floating literals separated by a comma enclosed by a matching set of angular 

brackets(< >). Any white space separating these components is ignored. 

 

1.2 Meaning of Identifiers 

Identifiers can be used to refer to functions, structures, members of structures and variables. All 
variables are automatic in scope with no ability to give them a static context. 
 
A brief description of types: 

1.2.1 Basic Types 

Integers (int) 

An integer is a 32-bit signed 2’s complement series of digits with the maximum range of 

2147483647. 
 

Doubles (double) 
 A double is a 64-bit double precision number. 



 5 

 

Characters (char) 
Characters occupy 8-bits and come from the ASCII set of characters. 

 

Vector (vec) 
A vector is a tuple of two doubles. The components can be accessed with the indexing 

operator ‘[]’. 
 

Void (void) 
 The void type is used to declare a function that returns nothing. 

1.2.2 Derived Types 

All types, with the exception of void, can be used to define the following derived types: 

 
Arrays 

Arrays are contiguous sequences of objects of a given type. They can be declared as:   

<type-name>[] or <type-name>[size], where size is constant expression. 

 

Structures (struct) 
A structure is  a sequence of named members of various types and a set of associated 
member functions (methods).  

 

Shapes (shape) 
 Shapes which are structures that need to implement a draw method. 

 

1.3 Conversion 

Explicit type casting is not allowed in the language. And the only conversion that occurs is the 
promotion of an integer to the equivalent double value when an integer is provided where a double 
is expected. This includes arithmetic operations between int and double types and assignment of 
an int to a variable of type double. 
 

1.4 Operators 

The following operators are allowed in the language: 
+ addition 
- subtraction 
* multiplication 
/  division 
%  modulo 
<  less than 
>  greater than 
<=  less than or equal to 
>=  greater than or equal to 
==  equivalence 
!=  inequality 
=  assignment  



 6 

+=  plus assignment 
-=  subtraction assignment 
/=  division assignment 
*=  multiplication assignment 
++   increment operator (prefix and postfix) 
--  decrement operator (prefix and postfix) 
+ unary plus 
- negation 
!  logical not 
| logical OR 
&&  logical AND 
[]  subscript  
::  scope 
&  pass by reference 

 

1.4.1 Arithmetic Operators 

+ addition 
- subtraction 
* multiplication 
/  division 
%  modulo 

 

ART supports the basic arithmetic operators: addition, subtraction, multiplication, division 
and  modulo (remainder operator). In general, the left and right operands for the operators have 

to be the same type after int to double conversion if necessary. The exceptional case is for vector 

double multiplication and division. The operators evaluate to the same type as their operands. 
 

Integers can be used with all the arithmetic operators. The division operator performs integer 

division (decimal truncated from result). The meaning of modulo operator for integers is such that: 

a == ( a / b) * b + (a % b). 
 

Doubles can be used with all athermic operators expect modulo. 
 
Vectors can used with addition and subtraction operators where the resulting vector is a 
componentwise sum/difference of the operands. Vectors can be multiplied with and divided by 
doubles with the same meaning as vector-scalar multiplication. The operations take the following 

form: <scalar> * <vector> ,<vector> * <scalar> and <vector> / <scalar>. The two forms 

for multiplication are equivalent. 
 

All arithmetic operations are left-associative with multiplication, division  and modulo having 

higher precedence than addition and subtraction. 

1.4.2 Relational operators 

<  less than 
>  greater than 



 7 

<=  less than or equal to 
>=  greater than or equal to 

 

The relational operators include: less than, greater than, less than or equal to, and 

greater than or equal to. These operators can only be applied to types int and double. Since 

there is no boolean type, the operators return 0 for false and 1 for true. 

1.4.3 Equality Operators: 

 ==  equivalence 
!=  inequality 

 

The equality operators include equivalence and inequality. They can be used with integers, 

doubles and vectors. Like relational operators they return 0 for false and 1 for true.  

1.4.4 Assignment operator: 

=  assignment  
+=  plus assignment 
-=  subtraction assignment 
/=  division assignment 
*=  multiplication assignment 

 

The assignment operators are principally the basic assignment operator = and the compound 

assignment operators with the form op= where op is one of the arithmetic operators. 

 

The basic assignment operator, when applied with a non-array object , stores the value of the 

right operand in the memory location corresponding to the left operand. This implies the left 
operand must be an expression that refers to an object in memory. Moreover, the left and right 
operands must be of the same type after the necessary promotions. 
 
For an array variable, the assignment makes the left operand an alias for the array object in the 
right operand. What happens to the array previously assigned to the left operand is implementation 
defined.  
 

The meaning of a compound assignment operator ‘l op= r’ is the same as ‘l = l op r’ but 

with the expression ‘l’ evaluated only once. Moreover the operation ‘l op r’ must be defined. 

 
The assignment operators are right associative operators.  

1.4.5 Increment/decrement operators: 

++   increment operator (prefix and postfix) 
--  decrement operator (prefix and postfix) 

 

These operators are a shorthand form of the expression x=x+1 or x=x-1 but with the expression x 
evaluated only once. They both have prefix and postfix forms. The prefix form ++x evaluates to 

the value of x after incrementing. The postfix form x++ evaluates to the value of x before 

incrementing. The same holds true for prefix and postfix decrement. Neither of these expressions 
can be used on the left side of an assignment. 



 8 

1.4.6 Unary Operators: 

+ Unary Plus 
- negation  
!  logical not 

 

Includes unary plus , negation and logical not. Unary plus and negation can take int, 
double and vec types as operands. Logical not applies only to int types. 

 

The negation operator is equivalent to multiplying by negative. For vectors, this implies 

component wise negation. The unary plus operator is  a nop added for symmetry.  

 

Logical not results in 0 for non-zero values and a 1 when applied to 0.  

1.4.7 Logical Operators: 

| logical OR 
&&  logical AND 

 

These are the OR and AND operators. The operators take in two int operands and return 0 or 1. 
OR returns 0 if both operands are 0, and 1 otherwise. AND returns 1 if both operands are 1 and 

0 otherwise. Both operators are short-circuited. That implies operands are evaluated left to right 

and the rightmost operand is not evaluated if the result can be determined from the leftmost one. 

1.4.8 Subscript Operator: 

[]  subscript 
 

The subscript operator is used to access individual objects in arrays and the components of 

vectors at the given index  (eg. x[5] gets the object at index  5). The first object location is always 

zero and accessing an index higher than the number of objects in a given array(which can be any 

number) or vector(always size 2) results in an out of bounds error.  

1.4.9 Scope Operator: 

 ::  scope 
 

The scope operator is only used for a member function (method) definition where the left operand 

is an identifier for a  struct or shape type and the right is the method name. 

1.4.10 Pass by Reference Operator: 

& pass by reference 
 

The pass by reference is a special operator which is used only in the argument list of a function 

definition. When this operator is applied to a valid type, the argument passed is passed by reference 
rather than by value as ART is a pass-by-value default language. In this way, the argument is not 
copied but directly used by the function. This operator cannot be used anywhere else. 
 



 9 

1.5 Functions 

1.5.1 Function Definition 

A basic function follows this format: 
 

<type> <name>(<parameter list>opt) 
{ 
 Function body 
} 

 

The <type> signifies the return type of the function which can be any of the basic types, 

struct/shape types and arrays of those types including arrays of array types. Functions that don’t 
return a value are defined with return type ‘void’. The name of the function needs to be unique. 

 

The parameter list can contain any number of parameters in the form of <type> <name>, where 

type is any valid type excluding void and name is any valid identifier which is used by the function 

to access the argument’s value. 

 

The parameter can also have the  pass-by-reference operator(which is appended to the type) 

which signals to the function to pass arguments by reference rather than by value (ART is by 

default a pass-by-value language). The pass-by-reference means that the argument is not 

copied but the argument’s name acts as it alias. The  pass-by-reference operator can only appear 

in the function definition and not the function call and only lvalues can be passed in as the 

argument for a pass-by-reference parameter. 

 

void exampleByRef(int& x) { x =7; } 
void exampleByValue(int x) { x = 10;} 
 
int x =5; 
exampleByValue(x);  // x  is unchanged 
exampleByRef(x);   // x is now set to 7 
exampleByValue(3);  // can do this 
exampleByRef(3);  // compiler error 

 
The function body is the actual code that is executed when a function call is performed. If a 
function has a non-void return type, it must have a return statement in its body. The expression 
in the return statement must match the return type. 

1.5.2 Function Calls 

Function calls are in the form of <name>(<argument list>) where <name> is a name of a function 

that has been previously defined. The length and types of arguments in the argument list of a 
function call must match exactly length and types of the parameter list in the function definition. 
 

A function call (to non void) will evaluate to a value of the type declared in the definition. This 

value is a copy of the value of the expression in the corresponding return statement in the function 

body. A function call to a void function has no value or equivalently has value void. 



 10 

1.5.3 Builtin-functions 

The symbol ‘#’ serves as a tag for builtin functions. 

 
#drawpoint( vec, int) 
 
Draw point takes a vector parameter that contains position of the point along with integer 
that  represents the color given to the pixel and passes it to the animation renderer.  The last 8 
bits of the color argument hold the red value, the next 8 bits the green value and the following 8 

bits hold the red value. The format can be condensed as ‘0x00RRGGBB’. 
 

#add(shape) 
 
Add takes one argument of a shape type and adds to the list of shapes to be drawn by the animation 
loops. The function must appear only within the outermost scope of the main function(cannot 
appear in nested scopes) and the shape must be either by a global variable or appear in the 
outermost scope of the main function. 
 

#add{shape ...} 
 
This version of add has the same restrictions as the single parameter version but can take in any 
number of shape arguments.   

 

1.6 Structs and Shapes 

1.6.1 Struct Definition  

A structure definition follows this format: 
 

struct <name> 
{ 
 <type> <member names>; 
  ... 
}  

 

The name of the struct must be unique and along with keyword struct, forms  the type-

declaration for that specific struct. . 
 

struct point { int x; int y} 
 
struct point pt1; // declares variable pt1 of type  struct point 

 

The body of the struct contains any number of variable declarations with a type and a name 

and belong within the scope of the structure. A variable cannot be assigned a value in the struct 
definition. 

1.6.2 Member Access 

The  way to access a variables and methods of struct is by using the post-fix dot notation expression 
as illustrated in the following example 



 11 

 

struct point pt1; // variable pt1 with type struct point 
 
pt1.x = 1; // variable x in instance of struct point pt1 has value of 1 
 
pt1.y = 2; // variable y is set to 2 

1.6.3 Defining Member Functions 

A member function (method) is a function that belongs within the scope of a struct and is defined 

as: 
 

<type> <struct-name>::<function name>(parameter-list) 
{ function body} 

 

Since a member function is in the scope of a struct, it can directly refer to the struct’s variables 

in its body. It can also call other member functions. The member variables/functions referred to 
in a method body correspond to the member variables of the object on which the method is called. 
In other words the struct variable is an implicit argument to the member function. 
 
Member function calls are written in the format of: 
 

<variable of type struct>.<name of member function>(parameter-list). 

 
Example: 
 

struct point { int x; int y}; 
 
vec point::getPoint(){  vec temp; temp[0] = x ; temp[1] = y; return temp} 
 
struct point pt1 
pt1.x= 1; 
Pt1.y=1; 
 
pt1.getPoint(); // returns a vectors with components 1,2 

1.6.4 Defining Constructors and Struct Initialization 

A constructor is a special method that initializes and returns an instance of a structure. A 
constructor has the same name as the struct it returns and hence a constructor definition has no 
return type. This also implies that there is only one constructor as function overloading is not 
supported.  
 
The body of constructor has access to the members of the struct like other methods. A constructor 
call creates a new object and the body of the constructor is executed with the newly created object 
provided as an implicit argument. The body of the constructor does not have a return statement. 
 

A constructor is called as if it were a function that had the same name as the struct.  A constructor 

call evaluates to a newly initialized object  and can be used anywhere an expression of the struct 
type is legal . For example, it can be assigned to other struct variables, passed to functions/methods 
and returned from functions/methods. 



 12 

 

point::point(int pt1, int pt2t) { x = pt1; y =pt2; } 
 
struct point pt = point(5,6); // pt has its x variable set to 5 and y to 6 

 

The other way to initialize a struct is to list the values in braces with the same number of listed 

values as fields in the structure being initialized 
 

struct point { int x; int y;} 
 
struct point pt1 = {1,2}; /* x and y in struct point are now 1 and 2 
respectively */ 

 

If a variable in a struct is not initialized there is no guarantee to what the variable will contain 

as a value. 
 
Structures can also be nested. The list initializers can be nested to initialize structs with nested 
structs. 
 

struct rectangle { struct point top, bottom;} 
 
struct rectangle r1 = { {1,2}, {3,4}} 

 
Aside: List initializers can also be used to initialize arrays. The nested form of list initializes can 
be used to initialize arrays of arrays.  

1.6.5 Shapes: 

Shapes  follow all the same conventions of structure but have the additional requirement of needing 
to have a draw member function defined. 
 

shape circle{ vec center; double radius} // creates new shape circle 
 

The draw member function dictates how the shape will be drawn when used in a timeloop or 

frameloop.  
 

The draw function usually contains either the logic that creates the values that are passed into 

#drawPoint or calls the draw methods of its member shapes. 

 

1.7 Statements 

Statements are the basic units of executions. The following types of statements are defined: 
 

expression-statement 
compound-statement 
selection-statement 
iteration-statement 
jump-statement 
builtin-statement 



 13 

1.7.1 Expression Statements 

These are statements of the form <expression>;. The value of the expression is evaluated and 

any side effects the expression may have takes effect before the next statement begins. 

1.7.2 Compound Statements  

Compound statements have the following form: 
 

 { declaration-listopt statement-listopt } 
 
The form of compound statements implies that variables declarations have to come before any 
statements in blocks (as well as function bodies).  
 
The variables that are defined in a block only exist and are accessible within the body of the block 
after the point in which they are defined. This is elaborated further in the scopes and declarations 
section. 

1.7.3 Selection Statements 

The selection statement has the following forms in the language: 
 

selection-statement: 

 if ( expression ) statement 

 if ( expression ) statement else statement 

 
 

if else statement: 

 
The language supports if else statements as selection statements. 
 

If the expression, which must be of type int, evaluates to a non-zero value, the first substatement 

(the if statement) is executed. The second substatement (the else statement) is executed if the 

expression is evaluated to zero. Nesting of the if else statements is also supported. 
 

To resolve the dangling else ambiguity, the else is associated to the nearest if.  

1.7.4 Iteration Statements 

Iteration statements specify loops. Iteration statements have the following forms in the language: 
 

iteration-statement: 

 while ( expression ) statement 

 for ( expressionopt  ; expressionopt ; expressionopt ) statement 

 for ( declaration   expressionopt ; expressionopt ) statement 

 timeloop ( dt = expression  ; end = expression ) statement 

 frameloop ( fps = expression  ; frames = expression ) statement 

 

while statement: 

 

The language supports while statements as iteration statements. 

 



 14 

In the while statement, the expression specifies a test. The substatement is executed repeatedly 

as long as the value of the expression, which must be of type int, is not equal to zero. The test, 

including all side-effects of the expression, takes place before each execution of the statement. 
 
 

for statement: 

 

The language supports for statements as iteration statements. 

 

In the first form of the for statement, the first expression, which can be of any type , is evaluated 

only once, and specifies initialization for the loop. The second expression, which must be of type 

int, specifies a test which is evaluated before each iteration of the loop. The for loop is terminated 

if the second expression evaluates to zero. The third expression, which can be of any type, specifies 
a re-initialization for the loop as it is evaluated at the end of each iteration. Typically, the third 
expression specifies an incrementation.  
 
The second form simply substitutes the first expression for a declaration. The variables defined in 
the declaration are local to the loop scope.  
 
The first form of the for statement is equivalent to: 

 expression1 ; 
 while ( expression2 ) 
 { 
  statement 

  expression3 ; 
 } 
 
The second form is equivalent to : 

 { 
  declaration 

  while ( expression2 ) 
  { 
   statement 

   expression3 ; 
  } 
 } 
 
Any of the three expressions (including the declaration) may be dropped. A dropped second 
expression makes the implied test equivalent to testing a non-zero constant, which results in an 
infinite loop 
 
 
Time loop: 
 
Time loop is on the the two animation specific control flow. In the first expression, the variable 

dt( which is treated as an integer) is assigned a value that represent the render period (in 

milliseconds) that the animation using. The second expression sets end (which is also treated as a 

integer) to a value representing the total time (in milliseconds) that the animation runs for. The 

statement that follows can use dt and end but cannot change dt or end or create a variable called 



 15 

dt or end. However, outside the statement, variables with these names can be declared but are 

masked inside the time loop statement.  
 
At the end of each iteration of the time loop, the runtime makes a call to the renderer to draw all 
the shapes.  
 
The time loop cannot be nested and must appear only in the main function and within the main 
function only in the outermost scope. 
 
 
Frame Loop: 
 

Frame loop is the second animation specific control structure. The first expression sets the int 
variable fps to the number of frames that are rendered per second.The second expression sets the 

int variable frames to the total number of frames  for the animation. Other than this, time loop 

and frame loop are equivalent. 
 

1.7.5 Jump Statements: 

Jump statements transfer control unconditionally. Jump statements have the following forms in 
the language: 
 

jump-statement: 

continue ; 
break ; 
return expressionopt ; 

 
 

continue statement: 

  

A continue statement may only appear in an iteration statement. It passes control to the loop-

continuation portion of the enclosing iteration statement.  
 
 

break statement: 

 

A break statement may only appear in an iteration statement. It terminates the execution of the 

smallest enclosing iteration statement, and passes control to the statement following the terminated 
statement.   

 
 

return statement: 

 
A function returns to its caller by the return statement. If an expression is provided, the value of 
the expression is return to the caller of the function. The expression must match the type returned 

by the function in which it appears, the only exception being the case where an int is automatically 

promoted to a double to match the return type.  An expression must be provided if the return 

type is not void. The no expression return statement corresponds to functions that have void 
return type. Falling off the end of the function is equivalent to a return statement with no 

expression. 
 



 16 

1.8 Variable Declaration 

Declarations follow the following format: 
 

declaration: 

 type-name init-declarator-list ; 
 
init-declarator-list: 
 init-declarator 

 init-declarator-list , init-declarator 

 
init-declarator: 
 identifier 

 identifier = initializer 

 
Type name corresponds to a non-void type or arrays thereof. The following are examples of valid 
declarations: 

 int x, y = 3, z  = 3; 
 int[] z = {1, 2, 3} , w = {4, 3, 5}; 
 int[4] b = {1,2,3,4} , f = {1,}; 
 Int[][3] a = { {1,2,3}, {3,4,5}}; 
 
The declaration can optionally be initialized. The effect of uninitialized variable declarations 
depends on whether the declarations happens in local or global (outside functions). Local variables 
are left uninitialized while global variables are zeroed (at the byte level). 
 
For array declaration, the size of the highest most dimension can be  omitted but that requires the 
use of a full array initializer to be provided from which the dimension can be inferred. 
 
Partial array initializers (ending with a comma) can be provided for arrays that have fully defined 

size. The parts of the array for which the partial initializer doesn’t provide values are zeroed.  

 

1.9 Program Structure: 

An ART program consists of struct/shape definitions, method definitions, function definitions and 
global variable declarations. 
 

The entry point for an ART program is the main() function and must be defined for all program. 

It must have return value int which is used to indicate program status to the calling 

environment.  Animation control structures in an ART program can only be used in the outermost 
scope of the main function. 
 

1.10 Scoping rules and Object Lifetimes: 

A program will be kept in one source file. All regular functions, member functions, structs  and 

shapes, are immediately accessible anywhere in the source file after being defined. The order of 
member function definitions does not matter. A function defined after a particular struct can call 
the member functions of the struct even if the member function definitions appear later in the 
source. 
 



 17 

Variables declared outside of any function have global scope and are visible at any point in the 
source after their declaration (definition). This variables persist through the duration of the 
program.  
 
Member functions (functions that are within the scope of a struct/shape) have access to all the 
member variables and member function of that struct/shape.  
 
Variables declared within blocks (including function/method bodies) are visible throughout the 
body of the block. The lifetime of this variables is up to the point they go out of scope.  
 
In particular, the scope of a parameter of a function is throughout the block defining the function 
and these variables only live during the function call. The exceptions are variables passed through 
reference which live outside the function. The second form of the for statement defines its own 
scope where variables declared in the for statement declaration are persistent and visible. 

Similarly  timeloops and frameloops  form their own scopes where the corresponding variables dt, 
end, fps, frames are persistent and visible. 

 
Variables names in a nested scope can have the same name as variables/functions names in the 
outer scope. But the new names hide the old names. Otherwise, names in the nesting scope are 
accessible from the nested scopes. 
 

1.11 Grammar 

translation-unit: 
 external-declarationopt 
 translation-unit external-declaration 
 
external-declaration: 
 function-definition 
 method-definition 
 declaration 
 struct-or-shape-definition 
 
method-definition: 

 method-declarator  ( parameter-listopt ) compound-statement 

 
function-definition: 

 function-declarator  ( parameter-listopt ) compound-statement 

  
declaration: 

 type-name init-declarator-list ; 
 
init-declarator-list: 
 init-declarator 

 init-declarator-list , init-declarator 

 
init-declarator: 
 identifier 

 identifier = initializer 

 
struct-or-shape-specifier: 
 struct-or-shape identifier 



 18 

 
struct-or-shape-definition: 

 struct-or-shape identifier { struct-declaration-list } 
 
struct-or-shape: 

 struct  
shape 

 
struct-declaration-list: 
 struct-declaration 
 struct-declaration-list struct-declaration 
 
struct-declaration: 

 type-name struct-declarator-list ; 
 
struct-declarator-list: 
 identifier 

 struct-declarator-list , identifier 

 
type-name: 
 type-specifier abstract-declaratoropt 
 

type-specifier: one of 
 void char int double vec struct-or-shape-specifier 

 
 
abstract-declarator: 

 abstract-declaratoropt [ constant-expressionopt] 
 
method-declarator: 

type-nameopt  identifier::identifier 

 
function-declarator: 

type-name identifier 
 
parameter-list: 
 parameter-declaration 

 parameter-list , parameter-declaration 

 
parameter-declaration: 
 type-name identifier 

 type-name & identifier 

 
initializer: 
 expression 

 { initializer-list } 
 { initializer-list , } 
  
initializer-list: 
 initializer 

 initializer-list , initializer 

 



 19 

statement: 
 expression-statement 
 compound-statement 
 selection-statement 
 iteration-statement 
 jump-statement 

builtin-statement 
  
builtin-statement: 

 #drawpoint ( expression , expression ) ; 
 #add ( expression ) ; 
 #add { argument-expression-list } ; 
 
expression-statement: 

 expressionopt ; 
 
compound-statement: 

 { declaration-listopt statement-listopt } 
 
declaration-list: 
 declaration 
 declaration-list declaration 
 
statement-list: 
 statement 
 statement-list statement 
 
selection-statement: 

 if ( expression ) statement 

 if ( expression ) statement else statement 

 
iteration-statement: 

 while ( expression ) statement 

 for ( expressionopt  ; expressionopt ; expressionopt ) statement 

 for ( declaration   expressionopt ; expressionopt ) statement 

 timeloop ( dt = expression  ; end = expression ) statement 

 frameloop ( fps = expression  ; frames = expression ) statement 

 
jump-statement: 

 continue ; 
 break ; 
 return expressionopt ; 
 
expression: 
 conditional-expression 
 postfix-expression assignment-operator expression 
 

assignment-operator: one of 
 = *= /= %= += -= 
 
conditional-expression: 
 logical-OR-expression 



 20 

 logical-OR-expression ? expression : conditional-expression 

 
constant-expression: 
 conditional-expression 
 
logical-OR-expression: 
 logical-AND-expression 

 logical-OR-expression || logical-AND-expression 

 
logical-AND-expression: 
 equality-expression 

 logical-AND-expression && equality-expression 

 
equality-expression: 
 relational-expression 

 equality-expression == relational-expression 

 equality-expression != relational-expression 

 
relational-expression: 
 additive-expression 

 relational-expression < additive-expression 

 relational-expression > additive-expression 

 relational-expression <= additive-expression 

 relational-expression >= additive-expression 

 
additive-expression: 
 multiplicative-expression 

 additive-expression + multiplicative-expression 

 additive-expression - multiplicative-expression 

 
multiplicative-expression: 
 prefix-expression 

 multiplicative-expression * unary-expression 

 multiplicative-expression / unary-expression 

 multiplicative-expression % unary-expression 

 
prefix-expression: 
 unary-expression 

 ++ unary-expression 

 -- unary-expression 

 
unary-expression: 
 postfix-expression 
 unary-operator unary-expression 
 

unary-operator: one of 
+ - ! 

 
postfix-expression: 
 primary-expression 

 postfix-expression [ expression ] 



 21 

 postfix-expression ( argument-expression-listopt ) 
 postfix-expression . identifier 

 postfix-expression ++ 
 postfix-expression -- 
 
primary-expression: 
 identifier 
 literal 

 ( expression ) 
 
argument-expression-list: 
 expression 

 argument-expression-list, expression 

 
literal: 
 integer-literal 
 character-literal 
 floating-literal 
 vector-literal 
 
 


