Semiconductor

sem·i·con·duc·tor

noun

1. A substance, such as silicon or germanium, with electrical conductivity intermediate between that of an insulator and a conductor

2. A semiconductor device
Sand into Silicon

Silica a.k.a. SiO₂ a.k.a. Quartz

\[
\text{SiO}_2 + 2 \text{C} \rightarrow \text{Si} + 2 \text{CO}
\]

Elemental, amorphous silicon

Monocrystalline Silicon Ingot
Doping Silicon Makes It a Better Conductor

- **Undoped (pure) silicon crystal**: Not a good conductor
- **p-type (doped) silicon**: boron atom steals a nearby electron
- **n-type (doped) silicon**: arsenic’s extra electron jumps loose
A PN Junction aka A Diode

Depletion region

p (holes) n (electrons)

0 V

Ammeter
A PN Junction aka A Diode

Forward biased: current flows
A PN Junction aka A Diode

Reverse biased: no current flow
An N-Channel MOS Transistor

Gate at 0V: Off

Gate

SiO₂

Drain

Source

n

p (holes)

Ammeter

+ 3V

+ 0V

+ 0
An N-Channel MOS Transistor

Gate positive: On

SiO$_2$

Drain

Source

p (holes)

Ammeter

3 V

3 V

0
The CMOS Inverter

An inverter is built from two MOSFETs:
An n-FET connected to ground
A p-FET connected to the power supply
The CMOS Inverter

When the input is near the power supply voltage ("1"),
the p-FET is turned off;
the n-FET is turned on, connecting the output to ground ("0").
n-FETs are only good at passing 0’s
When the input is near ground ("0"), the p-FET is turned on, connecting the output to the power supply ("1"); the n-FET is turned off. p-FETs are only good at passing 1’s.
The CMOS NAND Gate

Two-input NAND gate: two n-FETs in series; two p-FETs in parallel
The CMOS NAND Gate

Both inputs 0:
Both p-FETs turned on
Output pulled high
The CMOS NAND Gate

One input 1, the other 0:
One p-FET turned on
Output pulled high
One n-FET turned on, but does not control output
The CMOS NAND Gate

Both inputs 1:
Both n-FETs turned on
Output pulled low
Both p-FETs turned off
The CMOS NOR Gate

Two-input NOR gate:
two n-FETs in parallel;
two p-FETs in series.
Not as fast as the NAND gate because n-FETs are faster than p-FETs
A CMOS AND-OR-INVERT Gate
Pull-up and Pull-down networks must be complementary; exactly one should be connected for each input combination.

Series connection in one should be parallel in the other.
CMOS Inverter Layout

Cross Section Through N-channel FET

Top View
Intel 4004: The First Single-Chip Microprocessor

Announcing a new era of integrated electronics

A micro-programmable computer on a chip!

4001: 256-byte ROM + 4-bit IO port
4002: 40-byte RAM
4003: 10-bit shift register
4004: 740 kHz 4-bit CPU w/ 45 instructions (2300 transistors)
Intel 4004 Masks
Intel 4004 Die Photograph