
CSEE W3827

Fundamentals of Computer Systems

Homework Assignment 3

Solutions

Prof. Stephen A. Edwards

Columbia University

Due June 22, 2016 at 5:30 PM

Name: Solutions

Uni:

Show your work for each problem; we are more interested in how you get
the answer than whether you get the right answer.

1. (20 pts.) In MIPS assembly, implement the standard C function rindex:

char *rindex(const char *s, int c)

This returns a pointer to the rightmost occurrence of the character c in
the string s or NULL if the character is not found. The terminating null
byte is considered to be part of the string.

Start from the rindex.s template on the class website; use the SPIM
simulator.

Your function must obey MIPS calling conventions.

Turn in your solution on paper with evidence that it works. Add some
test cases. Also, upload your solution as a single .s file to Courseworks.

On the supplied test harness, your code should print

Looking for ’e’ in "Hello World!"
Found at position 1
Looking for ’l’ in "Hello World!"
Found at positio<n 9
Looking for ’z’ in "Hello World!"
Not found
Looking for ’Hello World!"
Found at position 12
Looking for ’z’ in "The quick brown fox jumps over the lazy dog"
Found at position 37

$a0 : s
$a1 : c

rindex:
move $v0, $0 # Default: did not find

loop:
lb $t0, 0($a0) # Get the character
bne $t0, $a1, rindex_not
move $v0, $a0 # It matched: remember its address

rindex_not:
addiu $a0, $a0, 1 # Go to the next character
bne $t0, $0, loop # Not at the terminating 0? Go again
jr $ra

2. (30 pts.) In MIPS assembly, implement an “eval” function that walks a
binary tree that represents an arithmetic expression and computes its
meaning. Each tree node begins with a byte that indicates the the node
is an integer (leaf) or operator plus two pointers to their arguments. In
C, this would be

struct expr {
char op; /* 0 for leaf */
union {

int leaf;
struct {
struct expr *left, *right;

} branch;
} pl;

};

int eval(struct expr *e)
{
int left, right;
if (e−>op == 0) return e−>pl.leaf;
left = eval(e−>pl.branch.left);
right = eval(e−>pl.branch.right);
switch (e−>op) {
case ’+’: return left + right;
case ’−’: return left − right;
case ’*’: return left * right;
}
return 0;

}

Start from the eval.s template on the class website.

Your function must obey MIPS calling conventions. Use the stack to
implement the recursion.

Implement your function in the SPIM simulator.

Turn in your solution on paper with evidence that it works. Add some
test cases. Also, upload your solution as a single .s file to Courseworks.

On the supplied test harness, your code should print

42 = 42
17 = 17
25 = 25
(17+25) = 42
(5*(2+3)) = 25
((5*(2+3))+(42-17)) = 50

$a0 : pointer to expr.
eval:

lb $t0, 0($a0)
bne $t0, $0, dobranch

Leaf: return its value
lw $v0, 4($a0)
jr $ra

dobranch:
Save $ra, $s0, and $s1 on stack

addiu $sp, $sp, -16
sw $ra, 0($sp)
sw $s0, 4($sp)
sw $s1, 8($sp)

Eval left tree (to $s0)
move $s1, $a0
lw $a0, 4($a0)
jal eval
move $s0, $v0

Eval right tree (to $v0)
lw $a0, 8($s1)
jal eval

lb $t0, 0($s1)
li $t1, ’+’
bne $t0, $t1, L1

Operator was +: add
addu $v0, $s0, $v0
b evalexit

L1: li $t1, ’-’
bne $t0, $t1, L2

Operator was -: subtract
subu $v0, $s0, $v0
b evalexit

L2: li $t1, ’*’
bne $t0, $t1, evalexit

Operator was *: multiply
mul $v0, $s0, $v0

evalexit:
Restore $ra, $s0, and $s1

lw $ra, 0($sp)
lw $s0, 4($sp)
lw $s1, 8($sp)
addiu $sp, $sp, 16
jr $ra

3. (25 pts.) Extend the single-cycle MIPS processor to support the andi
instruction (i-type, OP=001100).

4. (10 pts.) Assuming the following dynamic instruction frequency for a
program running on the single-cycle MIPS processor

addu 25%
addi 25%
beq 15%
lw 20%
sw 15%

(a) (5 pts.) In what fraction of all cycles is the data memory accessed
(either read or written)?

Only for loads and stores, so 20% (lw) + 15% (sw) = 35%.

(b) (5 pts.) In what fraction of cycles is the sign extend circuit used?
addi uses it for the immediate operand
beq uses it to compute the PC-relative address
lw uses it to compute the offset address
sw uses it to compute the offset address
So, 25% + 15% + 20% + 15% = 75%.

5. (15 pts.) For each of the caches listed below, show how a 32-bit
addresses breaks into tag, set index, and byte offset fields.

Cache A: 8192B, 4-way set-associative, 16B lines
64B per set, so 128 sets in cache
0 0

tag (21 bits) set index
(7 bits)

byte offset
(4 bits)

Cache B: 4096B, direct-mapped, 8B lines
8B per set, so 512 sets in cache
0 0

tag (20 bits) set index
(9 bits)

byte offset
(3 bits)

