Q1

	00110110	10101001
Binary	54	169
One's complement	54	-86
Two's complement	54	-87

00110110

Calculated the same way for binary, one's complement and two's complement because the most significant bit is zero

$$00110110_2 = 2^1 + 2^2 + 2^4 + 2^5 = 2 + 4 + 16 + 32 = 54_{10}$$

10101001

Binary:
$$10101001_2 = 2^0 + 2^3 + 2^5 + 2^7 = 1 + 8 + 32 + 128 = 169_{10}$$

One's Complement: 10101001_2 is negative. Flip bits to get

$$01010110_2 = -(2^1 + 2^2 + 2^4 + 2^6) = -(2 + 4 + 16 + 64) = -86_{10}$$

Two's Complement: 10101001_2 is negative. Subtract 1 from $10101001_2-1=10101000_2$. Flip bits to get $010101111_2=-(2^0+2^1+2^2+2^4+2^6)=-(1+2+4+16+64)=-87_{10}$

Or, treat the MSB as representing a negative number

$$10101001_2 = 2^0 + 2^3 + 2^5 - 2^7 = 1 + 8 + 32 - 128) = -87_{10}$$

Q2 Truth Table:

Х	Υ	Z	а	b
0	0	0	0	0
0	0	1	1	0
0	1	0	0	0
0	1	1	1	1
1	0	0	1	0
1	0	1	1	1
1	1	0	1	0
1	1	1	0	1

Evaluate each function for each different value of X, Y and Z. Example: Row 2, X = 0, Y = 0, Z = 1

$$a = (0 \cdot \neg 1) + (0 \cdot 0 \cdot \neg 1) + (\neg 0 \cdot 1) = 0 + 0 + 1$$
 ---> a evaluates to 1.

$$b = (0+0)(0+1)(\neg 0+1) = 0 \cdot 1 \cdot 1$$
 ---> b evaluates to 0.

For the curious:

Q3

(a)
$$F = \frac{1}{2}W!XY!Z + \frac{1}{2}WX!YZ + \frac{1}{2}WXYZ + \frac{1}{2}WX!YZ + \frac{1}{2}WX!Y$$

(b) Karnaugh Map

0	0	0	1
0	1	1	0
1	1	1	0
0	0	0	1

(c)
$$F = XZ + WX!Y + !XY!Z$$

(Relevant sections for each term highlighted below)

0	0	0	1
0	1	1	0
1	1	1	0
0	0	0	1

(d) Sum-of-products

(e)
$$F = \frac{(X + !Z)}{(X + Y)} \frac{(W + Y + Z)}{(!X + !Y + Z)}$$

(Relevant sections for each term highlighted below - I tried to approximate overlapping colors. Hopefully it's not too confusing.)

0	0	0	1
0	1	1	0
1	1	1	0
0	0	0	1

(f) Product-of-Sums

Q4 Here is the truth table, including the corresponding minterms

Х	Υ	Z	A0	A1	A2	А3	A4	A5	A6	minterm
0	0	0	1	0	0	0	0	0	0	!X!Y!Z
0	0	1	0	1	0	0	0	0	0	!X!YZ
0	1	0	0	0	1	0	0	0	0	!XY!Z
0	1	1	0	0	0	1	0	0	0	!XYZ
1	0	0	0	0	0	0	1	0	0	X!Y!Z
1	0	1	0	0	0	0	0	1	0	X!YZ
1	1	0	0	0	0	0	0	0	1	XY!Z
1	1	1	0	0	0	0	0	0	0	XYZ

5.

Χ	Υ	Z	F
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

Χ	Υ	F
0	0	¬Ζ
0	1	Z
1	0	¬Ζ
1	1	1

6. Use 2 four-input muxes with Y, Z as the selects. Then use a four-input mux that takes X and a constant 0 as selects. Since the second value is a 0, only the inputs corresponding to the 0 or 1 will become the output. The other two inputs are irrelevant.

7. Here is the truth table for the combinational logic of the counter. Note that the output is don't-cares for inputs 6 and 7:

Х	Υ	Z	Α	В	С
0	0	0	0	0	1
0	0	1	0	1	0
0	1	0	0	1	1
0	1	1	1	0	0
1	0	0	1	0	1
1	0	1	0	0	0
1	1	0	Х	Х	Х
1	1	1	Х	Х	Х

Here are the Karnaugh maps for A, B, and C

0	0	1	0
1	0	Х	Х

0	1	0	1
0	0	Χ	Χ

1	0	0	1
1	0	Χ	Χ

