The Evolution of a Smile
A Genetic Algorithm with FPGA Implementation

Jihua Li - jl4345
Wenbei Yu - wy2228
Yini Zhou - yz2719
Jian Jiao -jj2756

Overview

In recent years a great concern focuses on accelerating time-consuming algorithms that solve
large combinatorial optimization problems [1]. One is Genetic Algorithms.

Genetic algorithms, known as one of robust heuristic algorithms for complex optimization
problems in various fields of engineering, find application in bioinformatics, computational
science, economics and many other fields. It is a powerful technique that implements the
principles nature uses in biological evolution to optimize a multidimensional nonlinear problem
and provides robust capability of exploring in the solution space of a given problem [2].

However, one big problem of this algorithm is the computation time. The amount of
computations and iterations required for this method is enormous. As a result, software
implementations of GA can become extremely slow for large circuit partitioning problems. To
reduce the execution time of GA, hardware implementation of GA has been proposed[3].

In this project, we design an accelerator for Genetic Algorithm to generate Mona Lisa or any other

images with circles which are generated randomly in DNA sequence. The goal of this project is

to demonstrate Genetic Algorithm and to speed up the algorithm with the FPGA implementation
when compared to running on a regular CPU.

Based on the purpose of this project, we choose to implement the function of drawcircle, fitting
and padding in hardware instead of software to achieve higher speed, and remain to use software
for mutation and overall control. The whole project can moderately accelerate the algorithm and
is much faster than software implementation.

Design and Implementation

Architecture Overview

The architecture of our project is shown as bellow. Details of software, hardware and interface
are discussed in the following parts.

| Start |

| Import source image ‘

' —|7 : ; | Display Block —> VGA display
 J : ,T.
3 Process genetic
(7| moaue L.
‘ : : A
v : ' |
Exchange data !
Cti‘:::; E::A 5| |between Linux memory | | i %| Draw Circle Block
‘ : | and FPGA memory =)
! Hardware
Software

Software - Overview

The genetic algorithm is running on on-board linux soc platform using resources from hardware
accelerator to boost its running speed. A device driver is written to allow software
communicating with hardware interface.

Software structure can be divided into several parts listed below.
e Algorithm
o circle drawing and padding
© mutation
o fitting and comparison
o best child in generation updating
e Hardware accelerator interface
start signal triggering
data writing
data reading
status register reading

o O O O

hardware mode switching

Software - Details
ASM of genetic algorithm

initialization

mutation -

v

h 4

circle
drawing& padding

fitting and get best

update all children to

YES» best DNA

best better than previous

Data structure for DNA

DNA in this genetic algorithm are in form of linked list. Each node of the linked list is
saving a certain information of a circle including X,y position, the radius, color and opacity of the
circle.

typedef struct circ{
int X, y, rad, color;
int opacity;
struct circ* next;
} circle;
--codes in test.h in the software part of the project

Above is the node definition of the linked list mentioned. Because color is composed by
three RGB values each of which have a bit length of 8 bits, we use color to represent all RGB
values from the 24th bit down to the 1st bit.

For opacity, we used large integer to represent floating points since floating points cannot
be directly processed by FPGA hardware.

Initialization
Initialize and allocate memory for linked list with 100 children.

Each child have a start node of the circle linked list and an array is adopted for saving all
the starting nodes of all the start nodes of the circle linked list. In our codes, this array is
represented by the name of “data”.
data[i] is namely the i-th child of the generation.

Srand initialization

srand was initialized for further random number generation. The randomized number in
the following programme are used to generate equal chance for decision of the evolution
direction.

Best fit values initialization

Initialization of the current best child and best fit value in name of “best” and "diff”
respectively. These value will be updated whenever a better fit comes out.

Device driver interface initialization

Device driver for communicating with hardware interface will also be initialized.

Monalisa original picture loading

A mona lisa picture data was loaded from a local file named “mldata” which was
generated by Matlab. All pixel data was loaded and put in an array. The format of mldata is in
hex consisting 60000 length data of pixels in format of integer(32 bits).

Hardware original picture initialization

The loaded mona lisa pixel data are written into hardware through interface

Mutation

. [Get randam num with
o maxium of 2

A

Append a circle in
the end with Delete a random
randomized circle Eircle in the linked list

info

| |
|

IGet random num with
maxium of 2

YES NO—™| Done

As can be shown from the mutation ASM above, with equal chance, the function either
append a circle or delete a circle node from the linked list. Then also with equal chance, the
function either jump out or doing recursively.

Circle drawing and padding

This part was originally implemented in software but later moved to hardware for
acceleration. After hardware implementation, software just need to write circle information and
then give a start signal.

In hardware, the circle drawing status is set by writing 0x10004 to hardware. Circle
information of x,y,r are given in a single integer being writing to address 0x10001 in hardware.
0x10002 for opacity and 0x10003 for color. Start signal of drawing circle are triggered by
reading 0x00003 from the hardware.

Circle drawing pipelining

To boost up speed of drawing circles, pipelining methodology is adopted. In code, instead
of checking and waiting for one circle to complete then exit, we read and wait for the previous
circle drawing to finish and then put present circle information into hardware and then give start
signal. Then software is free to generate next circle information while hardware is drawing circle
on the ram.

Fitting and get best

Fitting is also implemented in software originally but later on moved to hardware for
acceleration. For hardware transplanted operation, write to address 0x10007 for changing mode
to fitting mode on hardware. write address 0x10000 to give fitting part the number of children in
each generation. Reading of address 0x00006 gives a start signal for fitting module.

Because we give the children number to hardware, the fit module will get best index and
difference value done automatically after fitting all children of a generation. Hence, after fitting
of each generation, the best value and minimal difference can be read from address 0x00000 and
0x00001 respectively.

Update best values

Each time when a new best index and smaller difference found, the best values are being
updated. In the algorithm, we first update the best index and difference value, then we free all the
circle linked list except for the best one. Later on, the best circle nodes are copied to all the
children of a generation to be the basis where next mutation is performed.

Hardware accelerator interface
start signal triggering

Start signals are triggered by reading registers from hardware, these registers are actually
virtual, return data are not of our interest. The address for different start triggering is listed
below.

#define CIRC_START 3

#define CLEAN _START 4

#define CP_START 5
#define FIT START 6
--codes in test.h showing the address for different start signals
data writing
Few data need to be transferred to hardware to perform correct function. The number of
children for each generation is needed by fitting module. Besides, all circle data is needed in
circle drawing module. The addresses for writing different data are listed below.
#define GEN_NUM 0x10000
#define CIRC DIM 0X10001
--Includes x,y,rad information
--x,y are 9 bits each and rad is 7 bits
#define CIRC_OPA 0X10002
--opacity 24 bits
#define CIRC_COLOR 0X10003
--color 24 bits, RGB 8 bits each in format {R,G,B}
data reading
Best values need to be read from fit module for updating operation. Different address are
listed below.
#define FIT DIFF 0
Minimal difference value each generation.
#define BEST GEN 1
Best child of each generation
status register reading
Status register can be read from address 0x00002. Certain bit fields of the status register
are listed below for further information
#define STATUS 2
#define CIRC_READY 0X8
#define CLEAN_READY 0X4
#define CP_ READY 0X2
#define FIT READY 0X1
hardware mode switching
Hardware works like a state machine, so each time when we want to change to another
function, we have to change status on the hardware.
This function can be further improved to achieve faster speed by automatically switching
modes based on knowledge of done and ready signals.
Address listed below can be written to change to different states on hardware.
#define DRAW 0X10004
#define CLEAN 0X10005
#define COPY 0x10006

#define FIT 0x10007

#define WRITE_LEFT 0x10008
#define WRITE RIGHT 0x10009
#define WRITE_TMP 0x1000A

Device driver

Driver of this project is different from lab3 before because instead of only writing data to
hardware, we also read data and return to user through avalon bus.

Also, in order to achieve virtual address on hardware, the width of a address would be 17. 16 bit
are used for writing chunks of data to a ram with size of 60000. One extra bit indicates whether
it’s writing to a memory or other operation.

The data bus width we need from hardware is 24, but from software perspective, we adopted 32
bits to read and write data with ioread32 and iowrite32.

In dts file, the address of the hardware is changed to range from 0x0000 to 0x7{fft.

Memory Requirement

Originally, 4 rams are needed to perform a pipelined operation of drawing and fitting and
displaying but the on-chip ram won’t fit 4 rams of size 60000. Therefore, three rams are used to
store our data.

All rams we used are dual-port ram.

Ram ram_ping is a temporary ram for saving pixels of circles that are drawn so that circle
drawing module can read and pad circles on top of existing circles. Both of the ports are used for
circle drawing in parallel.

left ram is used to store best generation’s circle pixels. It’s manipulated by both copy function
and display module. One of the ports are always connected to display module allowing VGA
fetching data at anytime. The other port is used for copy module to copy the internal temp ram to
this display one.

right ram is used to store source image data and allow display module to read and show on VGA
the two images.

Each image consists of 200*300 pixel. Each pixel is comprised of three bytes, R, G, B. So the
total memory usage is 540 KB.

Hardware - Overview

The hardware components of this project are primarily responsible for the following:

1. Display and vga emulator module display source image and generated image on the

VGA screen.

2. Drawcircle module stores each generation’s circles data in ram_ping.

3. Fit module compares value between ram_ping and right ram to find out the best

generation.

4. Pad module copies best generation’s data to left ram to display it on the screen.

5. Clean module cleans the temp ram for further drawing.

The figure below shows the block diagram for each module used in hardware.

address_a[15:0]

address_b[15:0] q_a[23:0]

data_a[23:0]
data_b[23:0]

RAM_PING =223

wren_a

wren_b

clock

address_a[15:0]
address_b[15:0]

data_a[23:0
data_b[23:0]

q_a[23:0]

LEFT RAM =00

wren_a

wren_b i

clock

address_a[15:0]
address_b[15:0] |9-2[23:0]
data_a[23:0]

q_b[23:0]
data_b[23:0] ——

RIGHT_RAM

wren_a

wren_b

T

clock

gen_num(7:0]

color_ram_ping[23:0]
color_ram_pong[23:0]

ADDREAD[15:0]

xcirc[2:0]
yeirc[9:0°

opacity[23:0]
color[23:0]

circ_color_read_up[23:0]

circ_color_read_down[23:0]

fit_ready
color_rom[23:0] FIT —
ping best[39:0]
start A
clock reset
4)
chipselect |readdata[31:0]
writedata[31:0 VGA bus
address[t6:0] | EVOLSMILE ———
_read | LED
clock reset
- J
color_left[23:0] vga_read_addr[15:0]
color_right[23:0]
- VGA_bus
DISPLAY ———

clock

reset

DRAW
CIRCLE

source_ram_data[24:0]

4

clock reset

start

start

PAD

circ_colstadut_up[23:0]

circ_color_out_down[23:0]
circ_address_up[15:0]
circ_address_down([15:0]
ready

circ_write_en_up

circ_write_en_down

ram_addr{15:0]
dest_ram_data[23:0]
write_en

ready

J%;

clock reset
clean_addr{15:0]
clean_data[23:0]

CLEANRAM | "
ready

clock reset

Hardware - Details

Peripherals
Peripheral evolisa is used in this project. The following screenshot from Qsys shows the

peripheral connections:

4 || _Use Connections Name Description Export Clock Base | End |
=i ¥ O dk_0 Clock Source \ |
Lad CH cli_in Clock Input clk exported
CH clle_in_reset Reset Input reset
— 1% clk Clock Output clk_0
1 clk_reset Reset Output
[v] B hps_0 Hard Processar System muitiple wui
7 & memory Conduit memory
=2 hps_io Conduit hps_io
= n2f_reset Reset Output
- h2f_axi_clock Clock Input clk_0
Y h2f_axi_master AX| Master [h2f_axi_c
f2h_axi_clock Clock Input clk_0
fZh_axi_slave AX| Slave [f2h_axi_c
h2f_lw_axi_clock Clock Input clk_0
P B h2f_lw_axi_master [AX| Master [h2f_lw_a.
v B master_0 JTAG to Avalon Master Bridge
clk Clock Input clk_0
clk_reset Reset Input
P master Avalon Memory Mapped Master [clk]
master_reset Reset Qutput
IZ = evolisa_0 evolisa
+ 3 avalon_slave_0 Avalon Memory Mapped Slave [clock_sink] 0x0000_0000 0x0007_ffff
<A conduit_end Conduit viga
reset_sink Reset Input [clock _sink]
clock_sink Clock Input ck_0
VGA

The VGA controller generates the VGA signals to control VGA display, just like what
we did in lab3. In this module, we need to generate clock signals such as VGA CLK, achieve
display in any coordinates of the screen and control color values for each pixel. This module
should communicate with user through Linux device driver, so the user can control the
coordinates, shape and color displaying on the VGA screen.

VGA signals VGA

User Space in Bus VGA Controller in
Software [€ FPGA

screen

A A

More specifically, the image display is handled in hardware by display.sv and
vga_emulator.sv. There are two images to be displayed in the screen. The left image is the best
generation circles of total 100 generations in one evolution. The right image is the source image.
The size of each image is 200*300 pixels. The position of left image is (80, 90) and the position
of right image is (360, 90). The vga emulator module change coordinate (X,y) to next pixel on
the rising edge of each clock cycle. The display module checks if this coordinate is in the field of
one of these images and if so, detect which image field this coordinate belongs to. If this
coordinate is in the left image field, the display module accesses left ram to get RGB values of
this coordinate. Since the address in the ram is linear and the coordinate is two dimension. The

address is decided by the equation vga read addr = (x - XL) * DIMY + (y - YL), where (XL,
YL) is the first point of the left field and DIMY is the height of the field. The process of right
image is the same. Then vga emulator module displays correct RGB values of this pixel. The
timing issue of vga_emulator is shown as follow.

) HTOTAL N
IBAClI(_PC?RCH HACTIVE FRONT_%ORCH
Video A \ f
e X
HSYNC

Draw Circle
1. Overview

In our project, we achieve Genetic Algorithm by mutated circles padding, which consumes a
lot of time and will be implemented on the hardware.

The function of draw-circle module is to write the information of generated circles onto the
RAM in FPGA, which will be used to compare with the target image in Fitness module. In
this module, we need to assign the RGB values of each circle to the correct address of RAM,
and achieve the circle overlap with opacity of circles.

The input of this module is all the information about a circle sent from software, including
the location (coordinates of the center) and radius (one byte) of the circle, its RGB values
(one byte each) and opacity (three bytes). These information are generated by the function of
mutate in software and saved in a linked list. The output of this module is the address in this
RAM where values will be changed and the corresponding values (RGB values) to write data
into the RAM.

When a circle has been mutated in the software, the circle information will be sent to the
draw-circle module along with the Start signal. And when a circle is finished, the module
will return a Ready signal to software, which means that it is ready to draw next circle.

2. Design

To achieve padding circles on a RAM, we need to do as follows:

1) Locate the center of circle on the corresponding address in the RAM using the X, y
coordinates of center of circle sent from software.

2) Judge whether other addresses in the RAM are in the circle or not using the radius.

3) For those addresses in the circle, overlap the circle on the background. That is, add the
new RGB values of this pixel to its original value with the ratio defined by opacity.

To locate the circle in the RAM, we use Circle Equation to judge whether an address is in
circle or not, which is the simplest way to draw circle. But there is no need to judge all
the addresses because we already know the radius and center of circle, and can define a
boundary for calculating. So in this module, we only judge whether the address is in the
circle in a district of square, which circumscribes the circle, as shown below. Meanwhile
read and write data in these addresses one by one.

Start+

]

™,
d
N

— - — -‘I—-l—-l—il_l-l

i

HHn

y
A\

o o e L ek e L |
"—qq—‘q—-|—4 -

iy —

]] =]] i i S e A — =

L—i o
N
Sl

1 1 B

Ready+

The whole function of drawing circle is designed using Finite-State Machine. When
received Start signal, the coordinates should be located at the up-left corner of the
square, then move right to the next address. For each address, we need to judge
whether it is in circle. If in circle, read old RGB values from that address and calculate
the new ones with the input RGB and opacity of the circle. When getting to the end of
line, the coordinates should go to the next line and start from the left. Finally when

having gone through all the addresses in this square, a Ready signal will be generated.
The whole procedure is shown above.

So roughly there should be six states: before start (s_start), start of line (s_sol), mid of
line and read (s_molr), mid of line and write (s_molw), end of line (s_eol), done
(s_done).

. Basic Implementation

According to the design, we add another two registers x, y to point to the address now
reading or writing. For each line in the square, let x add 1 when skipping to the next
address, and y add 1 when skipping to the next line. We need total three clock cycles to
achieve reading and writing to one address. The first cycle to locate to the exact
address, the second one to read values from that address and the third one to write the
new values calculated. Thus, we actually need two cycles for read in mid of line.

Along with the two reading cycles, when the address (%, y coordinates) is stable, x?, y?
and square of radius are calculated and compared to judge whether the position
belongs to the circle. If the address is in circle, the write_en signal will be set to 1, then
enable writing. After reading from the address, the new RGB values can be calculated by
multiplying RGB values of the new circle with opacity and add to old values, which can
be expressed by this formula.

New RGB values = circle RGBs * opacity + old RGBs from RAM *(1 - opacity)

Our specific algorithm is shown below.

e

s_start
X=- s_molw2
y =-
write_en =0 x=x+1
ready = 1 y unchange
write_en = 1
(if the address in circle)
0 stat T~ 1
_—
\/

0 _— ~—_ 1
< endofline >
s_sol 4\

—~

X = xcire - rad
y = ycirc - rad

write_en =0 0
ready =0 %\ endofcircle
\\/
s_eol s_eol
s_molr
X = xcirc - rad x=-1
x,){unchange y=y+l |
write_en =0 rteienia 0 A
s_molr2 s_done
x=-1
X, y unchange o
write_en = 0 Wﬁfe om0
[ready =0

4. Optimization

To speed up the procedure of drawing circle for better performance, we use dual-port
RAM to draw the upside and downside of the circle at the same time.

Here we made a little change to our basic implementation. We copy the original
“drawcircle” module to two modules “drawup” and “drawdown”, and change the
condition of the start and done for each module.

For module “drawup”, when start, X, y will point to the upon left corner of the square,
and when finish drawing the upside of the circle, a signal “readyup” will be sent back.
For module “drawdown”, y will start from the y coordinate of the center of the circle,
and end at the bottom right corner, also a signal “readydown” will be generated. When
both parts send back ready signal, a ready signal will be sent from the upper level
“drawcircle” to software.

With this optimization, the speed of drawing circle on the RAM is much higher than

before.

Ready_up+

Ready_down+

5. Further Improvement

The time for drawing circle can be even shorten by using Bresenham Algorithm of drawing
circle. This algorithm utilizing the geometric symmetry of a circle, can decide which pixel
belongs to this circle. The speed of this method is very fast, and will save the time wasted
for those pixels that don’t belong to the circle in our implementation. This can be a
direction for our furthermore optimization.

Clean RAM

This function is also achieved by Finite-state machine, but only two states. One state is
the default state with no operation, and the other is the clean state.

The clean operation is actually a writing operation that writes zeros into all the
addresses in a RAM. So when the module receives the Start signal, it will go to the clean
state, which will start from the first bit of the RAM and swipe till the last bit, set the
write_enable to 1 and write all Os for RGB values in RAM.

Fit Module
The Fit module aims at implementing the Fitness function in the original code into

hardware. The C code of this function is shown in Figure 1.

/%
* A fitness function to compare between 2 images.
*/
int fitness(int* im, int objcount, intx targ, int size){
unsigned int diff = 0;
int i;
int r,qg,b;
for (i=@; i<size; ++i){
r = ((targlil>>16) % 256) - ((im[i]>>16) % 256);
g = ((targ[i]>>8) % 256) - ((im[i]>>8) % 256);
b = (targl[il % 256) - (im[i] % 256);
diff 4= r*r + gxg + b*b;
}
return diff; // * (1+objcount/100);

1. Basic implementation
The Module block diagram is shown in figure 2.

gen_num[7:0]
color_ram_pin_g 23] | ADDREADI[15:0]
color_ram_pong[23:0] fit_ready
color_rom[23:0] FIT
ping best[39:0]
start

T

clock reset

Figure 2 Fit Block Diagram

The function of Fitness is to compare the difference of two pictures. Since the pixel value
consists of R, G, B, the difference is calculated by these three difference summing up together. In
the C code, because a pixel value is saved as int, which is a 32-bit data type, a shift operation is
used to get different part of the pixel.

A similar idea is applied in the hardware design. The basic operation is to calculate the
difference of each pixel and sum up together. The following code is corresponding to this
operation in the original C code, in which color ram_ping is a 24-bit output from the padded
RAM and color_rom is another 24-bit output from the RAM which saved the original image.

diff_r_ping = (colo‘r'_ram_ping[i’:a] - color_rom[7:8])x(color_ram_ping[7:8] - color_rom([7:0]);
diff_g_ping = (color_ram_ping[15:8] - color_rom[15:8])*(color_ram_ping[15:8] - color_rom[15:8]);
diff_b_ping = (color_ram_ping[23:16] - color_rom([23:16])=*(color_ram_ping[23:16] - color_rom[23:16]);

diff <= diff + diff_b_ping + diff_g_ping +diff_r_ping;

We set the logic signal ‘diff” as a 32-bit signal although in the extreme case, the
difference of two 200x300 images should overflow. We set this length because in our real case,
we believe this length is reasonable to represent the difference cases and we don’t need to spend
more hardware resources on this.

The main logic in the hardware fit module is how to traverse the whole picture, read out
the data from the two rams and calculate the difference then add it to diff. I use two parameters,
x and y to represent the coordinates of the current pixel. So that x and y indicate the index of the
current in the image array. We can use these two parameters to get the read address of the RAM,
which is shown below:

addread = xxDIMY + y;

The addread is a 16-bit signal, corresponding to the input address of the RAM.

In order to get the difference of the two images, the fit module is also expected to know
what is the best one in a single generation. And it need to return the index of the optimal image
to the software, so that the software can know which one should be chosen to be based on for the
next generation.

This function is realized by using a 40-bit output signal best to save the smallest
difference and the corresponding index num. best[39:32] is used to save the index number and
best[31:0] is used to save the smallest difference. A intermediate 8-bit logic signal ‘num’ is used
to track the index of the current image in one generation. Every time it finishes comparing one
picture, it will comparing the diff with best[31:0], if smaller, save the num to best[39:32] and diff
to best[31:0].

The input ‘gen_num’ is used to tell the module how many images in a single generation.
With this configuration information, the module is able to compare the whole generation and
start over by itself.

At the very beginning, we planned to pipeline the Fit operation with the Drawcircle
operation, so that a ping-pong RAM is needed. As a result, this module is designed with
color ram_ping and color ram_pong as input. These two signals are the data read out by the
ping-pong RAM and a 1-bit input ping indicates whether the module need to compare the ping
RAM with original image or the pong RAM with the original one.

2. Challenge Issue

After [first finished this implementation, I use the software testbench to test the function
correctness. While some bugs happened:

(1) If there’s a difference in the first pixel of two images, the result difference will be
calculated 3 times as output.

(2) If there’s difference in the last two pixels of the two images, the result achieved by the
module is not able to detect this difference.

While given the test result that the module can catch the difference in other pixel
positions well, we think that the problem may due to the timing issue.

I re-examine the code and find that I neglect a fact that once the address is provided to the
RAM, we need to wait for a clock cycle to get the output data. But in my original
implementation, I assumed that the data can be read out once the address is provided. So this
leading to the fact that I recalculate the first pixel’s difference and can not catch the final pixel’s
difference during the operation.

So I add another logic signal ‘count’ to separate the read-data and add-difference
behavior into two clock cycle. Signal ‘last’ is also used to solve this problem by extending one
clock cycle for the last pixel to finish the operation.

3. Improvement

Actually this module is able to make two improvement:

a. Optimize the difference calculation by using addition instead of multiplication.
This can be easily realized by adding an ‘if” sentence to compare the magnitude of
the two pixel values and use the bigger one subtracting the smaller one. Once we
replace the multiplication with addition, the clock period can be expected to be
shorter so that the whole performance can be improved.

b. Another improvement is realizing parallelism in the whole operation. We can set
the dimension of the block to half size of the image. Two fit block can operate in
parallel to calculate the difference of the top half and the below half of the image
separately. Using a top module to collect the difference result, adding them
together to get the final difference.

For improvement a, since in the whole hardware system, the multiplication is needed in
Drawcircle module, so the the clock frequency can not be improved just by replacing the
multiplication in this module. So we keep these multiplication to make it agree with the original
algorithm.

As for the improvement b, unfortunately, due to the hardware limitation, we can not
apply this to the implementation either. Detail challenge will be discussed in the Challenges part.

Pad Module

Pad module is used to copy the best generation’s data out of 100 generations to left ram
to display it on the screen. When fit module finishes and passes the number of best generation to
software, software controls pad module to read the data in ram_ping and write it into the
left ram.

The pad module is a Moore machine. There are five states, {s start, s read, s wait,
s write, s_done}. Signal start is controlled by software. When start is asserted to 1, pad module
starts to copy data. It takes three clocks to copy one item of data. The first clock is to read data
from source ram, ram_ping. Wait for one clock to complete read process, and the third clock is to
write date to destination ram, left ram. The number of address to read and write are the same.
Signal endofram is asserted high when ram_addr equals 16°d59999, the last useful address in the
ram. Details are shown in the following FSM.

start=0

s start s read 5_wait
start=1
ram_addr=0 A ram_addr i ram_addr=0
ready=1 ready=0 ready=0
write_en=0 write_en=0 write_en=0
endofram=0
s_start 5_write
endofram=1

am_addr=ram_addr+1
ready=0
write_en=0

Evolsmile

write_en=1

am_addr=ram_addr+1 €

ready=1

Evolsmile is the top module of the whole hardware system. In this module, it connects
the 3 RAMs, drawcircle, fit, pad, cleanram and display together. At the same time, it defines the

interface with the software.

The block diagram of Evolsmile is shown in Figure 3.

chipselect

writedata[31:0]

address[16:0]

read

write

readdata[31:0]

EVOLSMILE | YGAbus

LED

T

clock reset

Figure 3

The whole module behaviors as a moore state machine, which have the following states:

typedef enum{s_draw_on_ping,

s_clean_ping,
s_cp_ping_disp,
s_fit_ping,
s_write_left,
s_write_right,
s_write_tmp} state;

At state s_draw_on_ping, ram_ping’s input ports will be connected to drawcircle and the
generated circles will be written to this RAM.

At state s clean ping, ram_ping’s input will be connected to cleanram and the image in
the ram will be flushed away.

At state s_cp ping_disp, ram ping and left ram (which is used to display the optimal
image) will be connected to pad and the image in the ram_ping will be copied to the left ram and
be displayed on the screen.

At state s_fit ping, ram ping and right ram will be connected to fit, and their pixel
difference will be calculated by fit.

At state s_write_right, right ram will be connected to directly to the software input and
the software is able to write data into the ram.

State s write left and s write tmp, left ram are similar to s_write right and in these two
states, software is able to write data into the left ram and ram_ping directly.

Actually, when running the algorithm, some of the states may not be used at all. But we
still need them to debug and they can give us the insight of what’s going on in the hardware.

For the convenience of debugging, we light different LED to indicate the current state so
that we can know which state the hardware is stuck at and this is helpful to locate the bug.

As for the interface with the software, we use input signal read and write to determine
whether receiving data from the software or returning data back to software.

In order to indicate which state and signal software sending in, we use one extra bit on
the address bus to realize this. That’s why our address bus is 17-bit long.

Since the control signal of the function modules are rising-edge triggered or need a pulse
to trigger, we need to realize a pulse control signal in top module and sends them to the
corresponding units. So we keep the control logic low whenever there’s no input command from
software.

Performance

Performance of the whole system is evaluated both by time consuming and memory
consuming and is presented in comparison between hardware accelerated version and pure
software version.

Time consuming test by gprof

Pure software version

Each sample counts as 0.01 seconds.

% cumulative self self total

time seconds seconds calls ms/call ms/call name
81.56 1.15 1.15 100 11.50 11.50 fitness
10,64 130 0.15 100 1.50 1.50 allocatelmage
3,55 135 0.05 85815 0.00 0.00 resolveColor
2.13 1.38 0.03 89 0.34 0.90 drawCircle
0.71 1.39 0.01 124400 0.00 0.00 write reg
0.71 140 0.01 1 10.00 15.00 loadTarget
0.71 1.41 0.01 1 10.00 11.80 redraw

0.00 141 0.00 793 0.00 0.00 rnd

0.00 141 0.00 193 0.00 0.00 countCircles
0.00 141 0.00 103 0.00 0.00 cloneCircles
0.00 141 0.00 100 0.00 0.90 mutate

0.00 141 0.00 99 0.00 0.00 clonelmage
0.00 1.41 0.00 99 0.00 0.00 freeCircles
0.00 1.41 0.00 1 0.00 0.00 init

0.00 1.41 0.00 I 0.00 5.00 writebest

0.00 1.41 0.00 I 0.00 5.00 writetest

Accelerated version

% cumulative self self total

time seconds seconds calls ms/call ms/call name
40.00 0.02 0.02 339011 0.00 0.00 read reg
40.00 0.04 0.02 1 20.00 20.00 loadTarget
20.00 0.05 0.01 102 0.10 0.16 clean
0.00 0.05 0.00 60660 0.00 0.00 write reg
0.00 0.05 0.00 793 0.00 0.00 rnd

0.00 0.05 000 102 0.00 0.16 redraw
0.00 005 0.00 100 0.00 0.00 cloneCircles
0.00 0.05 0.00 100 0.00 0.13 fit

0.00 0.05 0.00 100 0.00 0.00 mutate
0.00 0.05 0.00 99 0.00 0.00 freeCircles
0.00 0.05 0.00 93 0.00 0.00 countCircles
0.00 0.05 0.00 89 0.00 0.00 draw

0.00 0.05 0.00 1 0.00 0.19 copy

0.00 0.05 0.00 I 0.00 0.00 init

0.00 0.05 0.00 1 0.00 0.00 writeright

As can be shown, fit and drawcircle function is fast accelerated and read reg function appears
consuming most of the time. This also indicates if all the states switching was handled from the
internal of hardware, the time consume can be further minimalized.

For load target function we don’t care how much time it takes because it runs only once.

Memory analysis

Pure software version
PID USER PR NI VIRT RES SHR S %CPU %MEM
1039 root 20 0 26384 24m 376 R 99.0 24

Accelerated version
PID USER PR NI VIRT RES SHR S %CPU %MEM
1034 root 20 0 1676 828 348 R 94.0 0.1

As can be shown from the top command above, the total percent of memory using of the
programme we running is much improved after using hardware acceleration.

1033752 is total memory in KB. After calculation, the accelerated version saved
23776KB namely almost 23Mb in total.

Challenges
Parallelism between Drawcircle and Fit

At the very beginning, we plan to realize parallelism between drawcircle and fit module.
For this kind of parallelism, a pair of ping-pong RAM are needed when drawcircle is drawing the
circle on ping and fit is comparing the pong with the original image at the same time.

While considering that we need two RAM to display two 200x300 images on the screen
to examine the evolution process of the algorithm, we have not enough RAM space left to save
another 2 200x300 images. Instead, we only have 1 RAM space left to do the operation.

Fit Parallelizing

As we mentioned in the Fit part, although two fit module can operate in parallel to
achieve higher performance, we are not able to realize this in our real implementation. This is
due to the RAM port restriction.

There are two RAMs fit need to read from during operation. One is the RAM ping, in
which saves our generated image. Another is the RAM contains the original image. During
operation, fit need to give the same address to these two ram and compare their output data. If we
parallel the fit part and two RAM ports are needed for each RAM. However, in order to display
our result on the screen, vga needs to keep reading the data from the RAM which contains the
original image and display it on the screen. As a result, we have only one port left for this RAM
that can be used by other modules.

Reference

[1] D. Abramson, P. Logothetis, A. Postula, and M. Randall, “Application Specific Computers for
Combinatorial Optimization,” in Australian Computer Architecture Conference. Sydney, Australia:
Springer-Verlag, 1997, pp. 29-44.

[2] S. Wakabayashiy, T. Koidez, N. Toshiney, M. Yamaney and H. Uenoy: “Genetic Algorithm
Accelerator GAA-IL,” Design Automation Conference, 2000. Proceedings of the ASP-DAC 2000.
Asia and South Pacific, pp. 9-10 (June. 2000)

[3] S.D. Scott, A. Samal and S. Seth: “HGA: A hardware-based genetic algorithm,” Proc.
ACM/SIGDA 3rd International Symposium on FPGA, pp.53-59 (1995).

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6731
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6731

Source Code
Software Code

ball.h

#ifndef BALL H
#define BALL H

#include <linux/ioctl.h>
#define BALL REG CNT 65536*2

typedef struct {
unsigned int addr; /* from O to 3 representing x,y,b,r */
unsigned int reg_data; /* integer data comes in */

} ball arg t;

#define BALL MAGIC 'q'

/* ioctls and their arguments */
#define BALL WRITE REG IOW(BALL MAGIC, 1, ball arg t *)
#define BALL READ REG IOWR(BALL MAGIC, 2, ball _arg t *)

#endif

ball.c

#include <linux/module.h>
#include <linux/init.h>

#include <linux/errno.h>

#include <linux/version.h>
#include <linux/kernel.h>

#include <linux/platform_device.h>
#include <linux/miscdevice.h>
#include <linux/slab.h>

#include <linux/io.h>

#include <linux/of.h>
#include <linux/of address.h>
#include <linux/fs.h>

#include <linux/uaccess.h>
#include "ball.h"

#define DRIVER NAME "ball"

/*

* Information about our device

*/

struct ball dev {
struct resource res; /* Resource: our registers */
void __iomem *virtbase; /* Where registers can be accessed in memory */
unsigned int datalBALL REG CNT];

} dev;

/*
* Write segments of a single digit
* Assumes digit is in range and the device information has been set up
*/

/Ix,y,b,r

/lelliptical formular with a=1 b on nominator default 10

//each parameter counts for 2 add

static void write_reg(int addr,unsigned int data)

{
iowrite32(data, dev.virtbase + addr*4);
dev.data[addr] = data;
h
/*

* Handle ioctl() calls from userspace:
* Read or write the segments on single digits.
* Note extensive error checking of arguments
*/
static unsigned int read reg(unsigned int addr)
{
unsigned int data;
data=ioread32(dev.virtbase+addr*4);

return data;

}

static long ball_ioctl(struct file *f, unsigned int cmd, unsigned long arg)

{
ball arg t balla;

switch (cmd) {
case BALL WRITE REG:
if (copy_from_ user(&balla, (ball arg t *) arg,
sizeof(ball arg t)))
return -EACCES;
if (balla.addr > BALL REG_ CNT)
return -EINVAL;
T
write_reg(balla.addr, balla.reg_data);
break;

case BALL READ REG:
if (copy_from user(&balla, (ball _arg t *) arg,
sizeof(ball_arg t)))
return -EACCES;
if (balla.addr > BALL REG CNT)
return -EINVAL;
balla.reg_data =read reg(balla.addr);
if (copy_to_user((ball arg t *) arg, &balla,
sizeof(ball arg t)))
return -EACCES;
break;

default:
return -EINVAL;

return 0;

/* The operations our device knows how to do */
static const struct file operations ball fops = {
.owner =THIS MODULE,

.unlocked ioctl = ball ioctl,

}s

/* Information about our device for the "misc" framework -- like a char dev */
static struct miscdevice ball misc_device = {

.minor = MISC_DYNAMIC_MINOR,
.name = DRIVER NAME,
.fops = &ball_fops,

¥

/*

* Initialization code: get resources (registers) and display
* a welcome message

*/

static int __init ball _probe(struct platform_device *pdev)

{

int ret;
ret = misc_register(&ball misc_device);

/* Get the address of our registers from the device tree */
ret = of address_to_resource(pdev->dev.of node, 0, &dev.res);
if (ret) {

ret = -ENOENT;

goto out_deregister;

/* Make sure we can use these registers */
if (request_ mem_region(dev.res.start, resource_size(&dev.res),
DRIVER NAME) == NULL) {
ret = -EBUSY;
goto out_deregister;

/* Arrange access to our registers */
dev.virtbase = of iomap(pdev->dev.of node, 0);
if (dev.virtbase == NULL) {

ret = -ENOMEM;

goto out_release mem _region;

}
T

/* Display a welcome message */
return 0;

out release_ mem_region:

release mem_region(dev.res.start, resource size(&dev.res));
out deregister:

misc_deregister(&ball_misc_device);

return ret;

/* Clean-up code: release resources */
static int ball _remove(struct platform_device *pdev)
{
iounmap(dev.virtbase);
release_mem_region(dev.res.start, resource_size(&dev.res));
misc_deregister(&ball misc_device);
return 0;

/* Which "compatible" string(s) to search for in the Device Tree */
#ifdef CONFIG_OF
static const struct of device id ball of match[] = {

{ .compatible = "altr,ball" },

{1,
¥
MODULE DEVICE TABLE(of, ball of match);
#endif

/* Information for registering ourselves as a "platform" driver */
static struct platform_driver ball driver = {
.driver = {
.name = DRIVER NAME,
.owner = THIS MODULE,
.of match_table = of match ptr(ball of match),
}s

.remove = exit_p(ball_remove),

}s

/* Called when the module is loaded: set things up */
static int __init ball init(void)
{
pr_info(DRIVER NAME ": init\n");
return platform_driver probe(&ball driver, ball probe);

/* Called when the module is unloaded: release resources */
static void __ exit ball_exit(void)
{
platform_driver unregister(&ball driver);
pr_info(DRIVER NAME ": exit\n");

module_init(ball_init);
module_exit(ball exit);

MODULE_LICENSE("GPL");
MODULE AUTHOR("Jihua Li Wenbei Yu");
MODULE DESCRIPTION("BALL Emulator");

ball.mod.c

#include <linux/module.h>
#include <linux/vermagic.h>
#include <linux/compiler.h>

MODULE_INFO(vermagic, VERMAGIC STRING);

struct module _ this_module

__attribute__ ((section(".gnu.linkonce.this_module"))) = {
name = KBUILD MODNAME,
.init = init_module,

#ifdef CONFIG_ MODULE UNLOAD
.exit = cleanup_module,

#endif

.arch=MODULE_ ARCH_INIT,
¥

static const char _module depends[]
__used
__attribute__ ((section(".modinfo"))) =

"depends=";

MODULE ALIAS("of:N*T*Caltr,ball*");

test.h

#ifndef TEST H

#define TEST H

#define POPULATION 100
#define DIM 200*300
#define DIMX 200

#define DIMY 300

#define MIN(x,y) (x>y?y:x)

#define GEN_NUM 0x10000
#define CIRC_DIM 0X10001
#define CIRC_OPA 0X10002
#define CIRC_COLOR 0X10003

#define DRAW 0X10004
#define CLEAN 0X10005
#define COPY 0x10006

#define FIT 0x10007

#define WRITE LEFT 0x10008

#define WRITE _RIGHT 0x10009

#define FIT DIFF 0
#define BEST GEN 1
#define STATUS 2
#define CIRC_START 3
#define CLEAN START 4
#define CP_START 5

#define FIT START 6

#define CIRC_READY 0X8
#define CLEAN_READY 0X4
#define CP_ READY 0X2
#define FIT READY 0x1

#endif

typedef struct circ{
int x, y, rad, color;
float opacity;
struct circ* next;

} circle;

test.c

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include "ball.h"
#include <sys/ioctl.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <math.h>
#include "test.h"

int ball_fd;

void write_reg(int addr,int color)
{
ball arg t balla;
balla.addr = addr;
balla.reg_data = color;
if (ioctl(ball_fd, BALL WRITE REG, &balla)) {
printf("ioctl(ball. WRITE REG) failed");

return;
}

}

unsigned int read reg(int addr)

{
ball arg tballa;
balla.addr=addr;
ioctl(ball fd,BALL READ REG,&balla);
return balla.reg_data;

}

void init()
{
static const char filename[] = "/dev/ball";
if ((ball_fd = open(filename, O RDWR)) == -1) {
fprintf(stderr, "could not open %s\n", filename);
}
}

void clean(){
write_reg(0x10005,0);
read reg(4);
while(!(read_reg(2)&0x00000004)){};
H

void copy(){
while(!(read reg(2)&0x00000008)){};

write_reg(0x10006,0);
read_reg(5);
while(!(read reg(2)&0x00000002)){};

void fit(){
write_reg(0x10007,0);
write_reg(0x10000,100);
read_reg(6);
while(!(read reg(2)&0x00000001)){};
h
//load data from local file mldata
void writeright(int* data){
int 1;
write_reg(0x10009,0);
for(i=0;1<60000;i++)
write reg(i,data[i]);
h
int* loadTarget(){
void* fp = fopen("mldata", "r");
int i =0;
int j=0;
char x;
int* data = malloc(DIM * sizeof{(int));
for(i=0;1<DIM;i++) {
for(j=0;j<4;j++){
fscanf(fp,"%c",&x);
*(data+i)[=(0x000000ff&x);
if(j!=3)
*(data+1)<<=8;

h
fclose(fp);

return data;
§
int countCircles(circle* e){
if (e ==NULL)
return 0;
return countCircles(e->next) + 1;

int rnd(int max){
return rand() % max + 1;

}

void draw (int X, int y, int r, int opacity, int color){

}

while(!(read reg(2)&0x00000008)){};
write_reg(0x10004,0);

write reg(0x10001,((x<<16)+(y<<7)+1));
write reg(0x10002,0pacity);
write_reg(0x10003,color);

read reg(3);

void redraw(circle *c){

}

circle* f;
clean();
for(f=c;f!=NULL;f=f->next){

draw(f->x,f->y,f->rad,f->opacity,f->color);

circle* mutate(circle* c){

if (md(2) > 1){

/* Add Random Circle */

circle* d = (circle *) malloc(sizeof(circle));
d->x = rnd(DIMX);

d->y =rnd(DIMY);

d->color = rnd(0Oxfttfft);

d->rad = rnd(50);

d->opacity = rnd(0x555555);

d->next = NULL;

// Put on end so doesn't screw prev image
if (c!=NULL){

circle* f;

circle® p;

for(f=c;fl=NULL;f = f->next){

p=t;

h

p->next =d;
telse{

c=d;

c->next = NULL;

draw(d->x,d->y,d->rad,d->opacity,d->color);

telse{
/* Delete Random Circle */
circle* f=c;
int num = countCircles(c)-1;

if (num >1){
int ind = rand() % num;
circle* old;

if (ind==0){
old =c;
C = c->next;

telse{

int 1;
for (1=0; i<ind; i++){
f = f->next;

old = (circle*) f->next;
f->next = f->next->next;
}
old->next =NULL;
free(old);
redraw(c);

telsed
if(c!=NULL){
free(c);
}
¢ =NULL;

}
if (rnd(2)>1)

¢ = mutate(¢);
return c;

void freeCircles(circle™* e){
if (e I=NULL){
if (e->next){
freeCircles(e->next);
h
e->next = NULL;
free(e);

}

circle* cloneCircles(circle* e){
if (e == NULL){

return NULL;
J
circle* d = (circle *) malloc(sizeof(circle));
d->x = e->x;
d->y = e->y;

d->color = e->color;
d->rad = e->rad;

d->opacity =e->opacity;

if (e->next !=NULL){

d->next = cloneCircles(e->next);
telse{

d->next = NULL;
}

return d;

}

int main(){

srand(1);

init();

int i;

unsigned int min_ind = 0;
unsigned int min=0xffffftff;
int* dat = loadTarget();

//write right plane
writeright(dat);
circle** data = malloc(POPULATION*sizeof{(circle*));
for(i=0;i<POPULATION; i++){
data[i] = NULL;
h
unsigned int prev = min;
circle* best = NULL;
int itrs =0;
min=read_reg(0);
min_ind=read reg(1);
printf("inner:%d,%d\n",min,min_ind);

while (1){
for(i =0; i<POPULATION; i++){
redraw(data[i]);
data[i] = mutate(data[i]);
fit();
h

min=read reg(0);

min_ind=read_reg(1);
printf("min=%d,min_ind=%d\n",min,min_ind);
/Isleep(1);

best=cloneCircles(data[min_ind]);

if (min<prev){
printf("new best: min=%d - %d circles\n", min,
countCircles(data[min_ind]));
prev = min;
redraw(data[min_ind]);
copy();

}

//print every tem generations completed
if(itrs%10==0){
printf("\t->%d, %d \n" , itrs, prev);
¥
/[free all bad children and copy the best to each child and redo mutation on this

basis
for(i =0; i<POPULATION; i++){

if (1 != min_ind){
freeCircles(data[i]);
data[i] = cloneCircles(best);

}
}
itrs ++;
}
return 0;

Hardware Code

vga_emulator.sv

module vga emulator(

input logic clk50, reset,
input logic [23:0] color,
output logic [9:0] XY,

output logic [7:0] VGA R, VGA_G, VGA_B,

output logic VGA CLK, VGA HS, VGA VS, VGA BLANK n,
VGA _SYNC n

);

//change to next pixel on rising edge of clock

/*

* 640 X 480 VGA timing for a 50 MHz clock: one pixel every other cycle

%

*HCOUNT 1599 0 1279 15990

*

* | Video | | Video

%

*

* SYNC| BP |<-- HACTIVE -->|FP|SYNC| BP |<-- HACTIVE
*

*| | VGA_HS L

*/

parameter HACTIVE = 11'd 1280,

HFRONT PORCH =11'd 32,

HSYNC =11'd 192,

HBACK PORCH =11'd 96,

HTOTAL =HACTIVE + HFRONT PORCH + HSYNC + HBACK PORCH;
/11600

parameter VACTIVE =10'd 480,
VFRONT PORCH = 10'd 10,
VSYNC =10'd 2,
VBACK PORCH =10'd 33,
VTOTAL =VACTIVE + VFRONT PORCH + VSYNC + VBACK PORCH; //525

logic [10:0] hcount; // Horizontal counter
logic endOfLine;

/************/

always_ff @(posedge clk50 or posedge reset)

if (reset) hcount <= 0;
else if (endOfLine) hcount <= 0;
else hcount <= hcount + 11'd 1;

assign endOfLine = hcount == HTOTAL - 1;

// Vertical counter
logic [9:0] veount;
logic endOfField,

always_ff @(posedge clk50 or posedge reset)
if (reset) vcount <= 0;
else if (endOfLine)
if (endOfField) vcount <= 0;
else veount <= vcount + 10'd 1;

assign endOfField = vcount == VTOTAL - 1;

// Horizontal sync: from 0x520 to 0x57F
//101 0010 0000 to 101 0111 1111

assign VGA_HS = !((hcount[10:7] == 4'b1010) & (hcount[6] | hcount[5]));
assign VGA_VS = !(vcount[9:1] == (VACTIVE + VFRONT PORCH) >> 1);
//modified here

assign VGA_SYNC n = 1;// For adding sync to video signals; not used for VGA

// Horizontal active: 0 to 1279 Vertical active: 0 to 479

// 101 0000 0000 1280 01 1110 0000 480

/1100011 1111 1599 10 0000 1100 524

assign VGA_BLANK n =!(hcount[10] & (hcount[9] | hcount[8])) &
!(veount[9] | (vcount[8:5] ==4'b1111));

assign VGA_CLK = hcount[0]; // 25 MHz clock: pixel latched on rising edge

assign VGA_R=color[23:16];
assign VGA_G=color[15:8];
assign VGA_B=color[7:0];

always _comb begin
if(hcount>11'd1279)

x=10'd0;
else
x=hcount[10:1];
if(vcount>10'd479)
y=10'd0;
else
y=vcount;

end
endmodule // VGA LED Emulator

display.sv
module display(input logic clock, reset,

input logic [23:0] color_left,
input logic [23:0] color_right,

output logic [15:0] vga read addr,

output logic [7:0] VGA R, VGA G, VGA B,

output logic VGA CLK, VGA HS, VGA VS,
VGA BLANK n,

output logic VGA _SYNC n);

//dimention of every single block of picture to display, maxium dim to be 65535
parameter DIMX=200;
parameter DIMY=300;

//position of left picture and right picture
parameter XL=80;
parameter XR=360;
parameter YL=90;
parameter YR=90;

logic [9:0] x,y;
logic [23:0] color;
vga emulator vga(.clk50(clock), .*);

always _comb begin
//display of left picture
if(x>=XL && x<DIMX+XL && y>=YL && y<DIMY+YL) begin
color=color_left;
vga read addr=(x-XL)*DIMY+(y-YL);
end
else if(x>=XR && x<DIMX+XR && y>=YR && y<DIMY+YR) begin
color=color_right;
vga read addr=(x-XR)*DIMY+(y-YR);
end
else begin
color=24"h00fffT;
vga read addr=16'd0;
end
end

endmodule

drawecircle.sv

//lusing pipeline methodology

/[circle drawing when in mutate function, draw circle when excuting next circle generation untill
all circles drawn

//need a bit for ram clear

module drawcircle(input logic clock, //should also drive writing port of the
ra,
input logic reset,
//200*311 need x,y bit width of 9, radius maxium
fixed to be 128 7 bits, color 24 bits, opacity 24 bits, 3*24 bits in total
input logic signed [9:0] xcirc,ycirc,
//one extra for sign
input logic signed [7:0] rad,
input logic [23:0] opacity,
//one extra for sign
input logic [23:0] color,
//color out put

input logic [23:0] circ_color _read up,

input logic [23:0]
circ_color read down,

input logic start,

output logic [23:0] circ_color out up,
output logic [23:0] circ_color _out down,
output logic [15:0] circ_address_up,
output logic [15:0] circ_address down,
output logic ready,
output logic circ_write_en_up,

output logic
circ_write_en _down

);
/**********************************P}\Rf\thTTﬂRS******************************

*************/

//dimention of every single block of picture to display, maxium dim to be 65535
parameter DIMX=200;
parameter DIMY=300;
wire ready up,ready down;
assign ready=ready up&ready down;

//lupdating fsm state

drawup up(.*,
.circ_color_read(circ_color read up),
.circ_color_out(circ_color_out up),
.circ_address(circ_address up),
.circ_write_en(circ_write_en_up),
.ready(ready up));

drawdown down(.*,
.circ_color read(circ_color read down),
.circ_color out(circ_color_out _down),
.circ_address(circ_address_down),
.circ_write_en(circ_write_en_down),
ready(ready down));

endmodule

Fit.sv

// This module is responsible for comparing the padded picture with the original picture, choose
the best one
/implemented by reading fixed number of ramdata from both ram and compare a difference and
accumulate with the last row.
//also pipeline methodology, when circles padded, start fitting while next circle is drawing.
module fit(input logic clock, reset,

input logic [7:0]gen_num,

input logic [23:0] color ram_ping,

input logic [23:0] color ram_pong,

input logic [23:0] color_rom,

input logic ping, // decide which ram to compare

input logic start,

output logic [15:0] addread,
output logic fit ready,

output logic[39:0] best);

//dimention of every single block of picture to display, maxium dim to be 65535
parameter DIMX=200;
parameter DIMY=300;

logic [31:0] diff;

logic [9:0] x=0,y=0;

logic [7:0] num=0;

31:0] diff r ping;

31:0] diff g ping;

31:0] diff b_ping;

31:0] diff r pong;

31:0] diff g pong;

31:0] diff b _pong;

logic fit=0; // indicate the ram can be used to fit

logic
logic
logic
logic
logic

1

logic

logic pad; // indicate the best is found and can be pad to the display ram
logic [1:0] last=0;

logic [7:0] num_max;

logic count=0;

always_ff @(posedge clock or posedge reset) begin
//display of left picture
if (reset) begin
best <= 40'hfffffftfts;
diff <=32'd 0;
x <=10'd 0;
y <=10'd 0;
num <= 8'd 0;
fit<=1'd 0;
fit ready <=1'd 1;
last <=0;
count <=0;
num_max <= 0;
end
else if (start) begin
if (num == num_max) begin
fit<=1'd 1;
fit ready <=1'd 0;

diff <=32'd 0;
x<=10'd 0;
y <=10'd 0;
last <=0;
num_max <= gen_num;
best <= 40'hffffffffff;
num <= 0;
count <=0;
end
else begin
fit<=1'd 1;
fit ready <=1'd 0;
diff <=32'd 0;
x<=10'd 0;
y <=10'd 0;
last <=0;
count<=0;
num_max <= gen_num;
end

end
else if (fit == 1) begin
if (count ==1) begin

count <=0;

if(y== (DIMY-1) && x == (DIMX-1)) begin
y <=10'd 0;
x <=10'd 0;

last <=last+1;
end
else if (x==0 && y==0 && last==1) begin
num <= num +8'd 1;//num-1
fit <= 0;
fit ready <= 1'dl;
last <=0;
if (diff < best[31:0]) begin
best[31:0] <= diff;
best[39:32] <= num;
pad <=1;
end

end
else if (y == (DIMY-1)) begin

y<=10'd 0;
x<=x+10'd 1;
end
else begin
y<=y+10d1;
end

end
if (count==0) begin
if (ping) diff <= diff + diff b _ping + diff g ping
+diff r ping;
else diff <= diff + diff b_pong + diff g pong +
diff r pong;
count <=1;
end

end
end

always _comb begin

addread = x*DIMY +vy;

diff r ping = (color ram_ ping[7:0] -
color rom[7:0])*(color_ram_ping[7:0] - color_rom[7:0]);

diff g ping = (color_ram ping[15:8] -
color rom[15:8])*(color ram_ping[15:8] - color rom[15:8]);

diff b _ping = (color ram_ping[23:16] -
color rom[23:16])*(color ram_ping[23:16] - color rom[23:16]);

diff r pong = (color ram_pong[7:0] -
color rom[7:0])*(color ram_pong[7:0] - color rom[7:0]);

diff g pong = (color_ram pong[15:8] -
color rom[15:8])*(color ram pong[15:8] - color rom[15:8]);

diff b _pong = (color ram pong[23:16] -
color rom[23:16])*(color ram pong[23:16] - color rom[23:16]);

end
endmodule

pad.sv

module pad(input logic clock, reset,
input logic [23:0] source ram_data,
input logic start,

output logic [15:0] ram_addr,
output logic write _en,

output logic [23:0] dest_ram_data,
output logic ready);

//dimention of every single block of picture to display, maxium dim to be 65535
parameter DIMX=200;
parameter DIMY=300;
logic endofram;
typedef enum {s_start,s read,s wait,s write,s done} state;
//moore
state current state, next state;

logic [15:0] x,nx;

always_ff @(posedge clock or posedge reset) begin

if (reset) begin
current_state<=s_start;
x<=0;

end

else begin
current_state <= next_state;
X <= nx;

end

end

always_comb begin
case(current_state)

s_start: begin

end
s read: begin
start drawing line, put x,y pos in to states
end
I
s_wait: begin
end
s_write: begin
end
s_done: begin

if (start)
next state =s_read;

else
next state =s_start;
nx=0;;
ready=1;
write_en=0;

/ljust

next state =s_wait;
nx = X;

ready=0;
write_en=0;

next state=s_write;
Nnx=x;

ready=0;
write_en=0;

if(endofram)

next state=s_done;
else

next state =s read;
nx=x+12'sdl;
ready=0;
write_en=1;

next state =s_start;
nx=x+1;;

ready=0;
write_en=0;

end
endcase
end
assign endofram = (x==16'd59999);
assign ram_addr=x;
assign dest ram data=source ram_data;
endmodule

cleanram.sv

module cleanram(input logic clock, reset,
input logic start,

output logic [15:0] clean_addr,

output logic write_en,
output logic ready,
output logic [23:0] clean_data);

//dimention of every single block of picture to display, maxium dim to be 65535
parameter DIMX=200;
parameter DIMY=300;

logic endofram;

typedef enum {s_start,s clean} state; //moore
state current_state, next_state;

logic [15:0] x,nx;

always_ff @(posedge clock or posedge reset) begin
if (reset) begin
current_state<=s_start;
x<=16'd0;
end
else begin
current_state <= next state;
X <= nx;

end
end

always _comb begin
case(current_state)
s_start: begin

end
s _clean: begin

end
endcase

end

assign write en=l1;

assign clean data=24'd0;

assign clean addr =x;

assign endofram = (x==16'd59999);
endmodule

evolsmile.sv

module evolsmile(input logic clock,
input logic

if (start)
next state =s_clean;

else
next state =s_start;
nx=16'd0;

ready=1;
if(endofram)

next state =s_start;
else

next state =s_clean;
nx=x+1;
ready=0;

reset,

input logic [31:0] writedata,

output logic [31:0] readdata,

input logic read,
input logic write,
input chipselect,
input logic [16:0] address,
output logic [7:0] VGA R, VGA G, VGA B,
output logic VGA CLK, VGA HS, VGA VS,
VGA BLANK n,
output logic VGA SYNC n,
output logic [3:0] LED
);
wire [15:0] ping_address_a,ping_address_b;
wire [23:0] ping_data_a, ping_data b, ping q a,ping q b;
wire ping wren _a,ping wren b ;

ramlisa ram_ping(.clock(clock),

.address_a(ping_address_a),

/Iwrite/read address for drawcircle
.data_a(ping_data_a),
.wren_a(ping_wren_a),
.q_a(ping_q_a),
.address_b(ping_address b),
.data_b(ping_data b),
.wren_b(ping_ wren_b),
.q_b(ping_q_b));

wire [15:0] left_addr;
wire [23:0] left_data,left q;
reg left wren;

ramlisa left ram(.clock(clock),
.address_a(left_addr),
.data_a(left_data),
.wren_a(left wren),
.q_a(left_q),
.address_b(vga read addr),
.data_b(0),
.wren_b(0),
.q_b(color_left));

wire [15:0] right addr;

wire [23:0] right_data,right q;

reg right wren;

ramlisa right_ram(.clock(clock),
.address_a(right_addr),
.data a(right data),
wren_a(right_wren),
.q_a(right_q),
.address_b(vga read addr),

.data b(0),
.wren_b(0),
.q_b(color_right));
logic signed [9:0] Xcire,ycire;
logic signed [7:0] rad;
logic [23:0] opacity;
logic [23:0] color;
logic circ_start,circ_ready;
wire circ_write_en_up,circ_write en_down;
wire [15:0] circ_address up,circ_address down,;
wire [23:0]

circ_color_out _up,circ_color out down,circ_color read up,circ_color read down;
drawcircle draw (.*,
xcirc(xcire),
.ycire(ycire),
-rad(rad),
.Sstart(circ_start),
ready(circ_ready));

wire [23:0] cp_source data;

wire [23:0] cp_dest data;

wire [15:0] cp_ram_addr;

reg cp_start,cp_ready,cp write en;
pad copy(>,

.source_ram_data(cp_source data),
.start(cp_start),

ram_addr(cp _ram_addr),
write_en(cp_write_en),

.dest ram data(cp_dest data),
.ready(cp_ready));

wire
wire

reg
cleanram

reg
wire
reg
reg

[23:0] clean_data;
[15:0] clean_addr;

clean_start,clean ready,clean write en;
clean(.*,

.start(clean_start),

.clean_addr(clean_addr),
.write_en(clean_write_en),
ready(clean_ready),
.clean_data(clean data));
[7:0] gen num;
[15:0] fit_addr;
fit ping,fit ready,fit start;
[39:0] fit_best;

fit compare ram(.*,

wire
wire

.gen_num(gen_num),

.color_ ram_ping(ping q a),

.color_ ram_pong(0),

.color rom(right q),

.ping(1), // decide which ram to compare
.start(fit_start),

.addread(fit_addr),

fit_ready(fit ready),
best(fit_best));

[23:0] color left,color right;
[15:0] vga read addr;

display disp (.*);

typedef enum{s_draw on ping,

s clean_ping,
s_cp_ping_disp,

s _fit ping,
s_write_left,
s_write right,
s_write_tmp} state;

state current_state;

always_ff @(posedge clock or posedge reset) begin
if(reset) begin
current state<=s_write right;
fit_ping<=0;
gen num<=200;
circ_start<=0;
clean_start<=0;
cp_start<=0;
fit_start<=0;
xcire<=100;
ycire<=100;
opacity<=24'hffffff;
color<=24'hffO0ff;
end
else if(chipselect&&write)
case(address)
17'h10000 : gen num<=writedata[7:0];
17'h10001 : {xcirc[8:0],ycirc[8:0],rad[6:0]} <=writedata[24:0];
17'h10002 : opacity<=writedata[23:0];
17'h10003 : color<=writedata[23:0];
17'h10004 : current state<=s draw_on_ping;
17'h10005 : current_state<=s_clean_ping;
17'h10006 : current state<=s cp ping_disp;
17'h10007 : current_state<=s_fit ping;
17'h10008 : current state<=s write left;
17'h10009 : current_state<=s_write_right;
17'h1000A : current_state<=s write tmp;
endcase
else if(chipselect&&read)
case(address)
17'h0 : readdata<=fit_best[31:0];
17'h1 : readdata<=fit best[39:32];
17'h2 :
readdata[3:0]<={circ_ready,clean_ready,cp ready,fit ready};
17'h3 : circ_start<=1;
17'h4 : clean_start<=1;
17'hS : cp_start<=I;
17'h6 : fit_start<=1;
endcase

else begin
circ_start<=0;
clean_start<=0;
cp_start<=0;
fit_start<=0;
end

end

always _comb begin

case (current state)

s _draw_on_ping: begin
ping_address a=circ address up;
ping data a=circ_color out up;
ping_wren a=circ_write_en_up;

ping_address b=circ_address down;
ping data b=circ_color out down;
ping_wren b=circ_write_en_down;

left addr=0;
left data=0;
left wren=0;

right addr=0;
right_data=0;
right wren=0;

circ_color read up=ping q a;
circ_color read down=ping q b;
cp_source data=0;
LED=0;
end
s_clean_ping: begin
ping_address a=clean_addr;
ping data a=clean_data;
ping wren a=clean write_en;

ping_address b=0;
ping data b=0;
ping_wren_b=0;

left addr=0;
left data=0;
left wren=0;

right addr=0;
right data=0;
right wren=0;

circ_color_read up=0;
circ_color read down=0;
cp_source data=0;
LED=1;
end

s _cp_ping_disp: begin
ping address a=cp ram_addr;
ping_data a=0;
ping wren_a=0;

ping_address b=0;
ping_data b=0;
ping wren_b=0;

left addr=cp ram_addr;
left data=cp_dest data;
left wren=cp_write_en;

right addr=0;
right_data=0;
right wren=0;

circ_color read up=0;
circ_color read down=0;
cp_source data=ping q a;
LED=2;
end

s _fit ping: begin
ping address a=fit_addr;
ping data a=0;

ping wren a=0;

ping_address b=0;
ping data b=0;
ping wren b=0;

left addr=0;
left data=0;
left wren=0;

right addr=fit addr;
right_data=0;
right wren=0;

circ_color read up=0;
circ_color read down=0;
cp_source data=0;
LED=3;
end

s _write_left: begin
ping_address a=0;
ping data a=0;
ping_wren_a=0;

ping_address b=0;
ping data b=0;
ping_wren_b=0;

left addr=address[15:0];
left data=writedata[23:0];
left wren=write;

right addr=0;
right data=0;
right wren=0;

circ_color_read up=0;
circ_color read down=0;

cp_source data=0;
LED=4;
end

s_write_right: begin
ping_address a=0;
ping data a=0;
ping_wren_a=0;

ping_address b=0;
ping data b=0;
ping_wren_b=0;

left addr=0;
left data=0;
left wren=0;

right addr=address[15:0];
right data=writedata[23:0];
right wren=write;

circ_color read up=0;
circ_color_read down=0;
cp_source data=0;
LED=5;
end

s_write_tmp: begin
ping address a=address[15:0];
ping_data_a=writedata[23:0];
ping wren_a=write;

ping_address b=0;
ping data b=0;
ping wren b=0;

left addr=0;
left data=0;

left wren=0;

right addr=0;

right_data=0;
right wren=0;

circ_color read up=0;
circ_color read down=0;
cp_source data=0;
LED=S;
end
endcase
end
endmodule

