
RSA_Box
Emily Pakulski (enp2111) 
Jaykar Nayeck (jan2150)
Adam Incera (aji2112) 

Noah Stebbins (nes2137)



“A fast and secure hardware accelerator 
for RSA encryption with a clear, simple 

interface for programmer use.”



Initial goals

Provide a simple, well-defined interface for a host machine to carry 
out RSA cryptography operations on a dedicated piece of hardware.

1. Implement RSA algorithms using SystemVerilog.
2. Provide a software interface (Linux device driver, wrapper (in C), 

and example interface) to use the RSA Box.



High-level design



Original vs. final design

Observation: parts of the RSA algorithm are “fixed costs”, others are “marginal costs”.
Final design prioritizes lowering the overhead for repeated operations, rather than all operations -- highly costly 

Extended Euclid’s algorithm moved to software.

Observation: implementing operations for large-bit values is time-consuming and not always possible.
 We changed our algorithms to use fewer operations and focused on speeding up encryption/decryption.



Contributions

● Jaykar: primary hardware framework writer, device driver, 
hardware/software interface (first version)

● Emily: C wrapper, hardware/software interface, C interface
● Adam: multiplier block and exponentiation
● Noah: private key generation and primality testing



Software/Hardware Interface

● Created 14 operation “ISA” that C wrapper 
sends to device driver to communicate with 
hardware.

● Lesson learned: standardize this earlier.
● OS was really helpful -- we struggled with the 

device driver lab3 code.



Private Key Generation (Software)

● Private Key: Extended Euclid’s in Python
○ computes modular multiplicative inverse → private 

key, piped into C
● Public Key:

○ initial approach: Miller-Rabin + Linear Backoff
○ final approach: hard-coded list of 64 bit primes



Hardware implementation

● Optimized modular multiplication from 6 
cycles to 2 cycles per bit

● Set up a parallel block for modular 
exponentiation so encryption and decryption 
can run simultaneously



Encrypting & Decrypting (Hardware)

● Modular multiplication block
○ Multiplies two 128-bit numbers and reduces on a 128-

bit modulus in 257 clock cycles
● Modular exponentiation block

○ Performs exponentiation in O(n) time where n is the 
bit length of the exponent



Modular Exponentiation Algorithm

Source: http://en.wikipedia.org/wiki/Modular_exponentiation



Where we struggled (Git history)

Tl;dr: Should have taken the pre-reqs. Advanced Logic Design would have been nice.


