Ticker Plant System
Implemented in Max Compiler

Gabriel Blanco (gab2135@columbia.edu)
Brian Bourn (bab2177@columbia.edu)
Suchith Vasudevan (sv2340@columbia.edu)
David Naveen Dhas Arthur (da2647@columbia.edu)

Guided by

Prof. David Lariviere
Prof. Stephen Edwards
Department of Computer Science,
Columbia University,
New York

May 14", 2015

mailto:gab2135@columbia.edu
mailto:bab2177@columbia.edu
mailto:sv2340@columbia.edu
mailto:da2647@columbia.edu

Table of Contents

1 Abstract
2 Introduction
2.1 Financial Exchanges
3 System Overview
3.1 CPU Code
3.1.1 Market Data Simulation
3.1.2 UDP Networking
3.1.3 Result Validation
3.2 Data Flow Engine
3.3 Kernel
3.3.1 Input Frame Parsing
3.3.2 Calculating Implied Orders
3.3.4 Output Format
3.3.5 Framed Kernel
3.3.6 Kernel Graph
3.3 Manager
4. Tool Chain
4.1 Maxeler Framework
4.2 Max Workflow
4.2 Resource Utilization
S. Hardware
5.1 Max4N Platform
5.1.1 QSFP Ports
5.1.2 10-Gbps Ethernet
5.3 Altera Stratix V FPGA
5.4 Chip Utilization
6. Conclusions
7. References
Appendix A: Terminology
Appendix B: Code
FieldAccumulatorCpuCode.c
FieldAccumulatorKernel.maxj
FieldAccumulatorManager.maxj
generate_input.py
source data.csv

1 Abstract

Our project aims to implement a Ticker Plant on a Stratix V FPGA running on a Maxeler MAX4N
board. Our program, written using the Max Compiler, receives a simulated input stream of market data
(futures and calendar spread prices) that is similar in structure to real world market data, and aggregates
them in the on-chip memory. The FPGA then actively sends out a completed book of known
instruments, as well as the implied bidding and asking prices of those instruments, calculated by using
calendar spread data.

2 Introduction

Global

Exchanges
.

UDP Multicast —_—n
SIAC FPGA NG /
Ticker Plant d
N Banks
o ,

NASDAQ Data Feed — >

~/

Firms

Electronic
Traders

L |

Commodity
Exchanges

Data Feed

i1

—

Fig. 1: Ticker Plant

If a bank or another firm wants a real-time order book for a specific set of instruments and spreads,
instead of parsing live market data from a global exchange, they will use a ticker plant to reduce the
data load and overhead. Ticker plants consumes large amounts of market data and output an order book
that is filtered and normalized.

Modern electronic markets are high packet rate systems, so in order to mitigate the risk of losing any
information, ticker plants need to be low-latency, deterministic, and most importantly: reliable.
Software implementations are not as fast as hardware solutions; they are often susceptible to packet
loss as well as long latency tails caused by serialization delays. The legacy x86 architecture that is
found in most personal computers was never intended to be used for real time data transmission. It is
for that reason that it is much more suitable to build a ticker plant using an ethernet enabled FPGA.

For example, if a ticker plant running at a full network load (40 Gb/sec) goes down for a millisecond,
and we assume that the average UDP packet is about 1 kilobyte, that would mean a potential loss of
almost 50,000 packets of information. With uptime being so important, hardware implementations of
ticker plants are a necessity for the modern marketplace.

2.1 Financial Exchanges

The market data that is collected by the ticker plant comes from one of the many financial exchange,
each of which has different protocols and format, dealing with a wide array of trades.

Examples of modern financial exchanges are:

Chicago Mercantile Exchange
Bombay Stock Exchange
Dubai Mercantile Exchange
Moscow Exchange

These financial exchanges are responsible for ‘clearing’ all financial transactions that they service. In
banking and finance, clearing includes all activities from the time a commitment is made for a
transaction until it is settled. Clearing of payments is required to turn the promise of payment into
actual movement of money. In trading, clearing is necessary because the speed of trades is much faster
than the cycle time for completing the underlying transaction. Central Counterparty Clearing is a
process by which financial transactions in equities are cleared by a single (“‘central”’) counterparty. A
financial exchange is a central clearing counterparty which bears all default risk on all transactions that
they service.

3 System Overview

Our system begins by simulating market data. Using a Python script, we generate a large sample size of
randomized packets of market data which include the Instrument ID, Side, Level, Price and Quantity of
individual instruments, which is then stored in a .csv file. In software, we load and parse that csv and
send each of the instrument packets as a package of data via UDP, simulating how we would otherwise
be receiving the data from a global exchange.

In hardware, our 10-gigabit ethernet enabled FPGA receives the UDP messages and parses them as
input frames. Using a series of data flow logic, we parse the various parameters of the input frames to
find where to store the pricing and quantity data in registers of the hardware. Using the most up to date
values of the instruments stored in register on the on-chip memory of the FPGA, we calculate the
“implied” instruments. Knowing the bidding and asking prices of spreads (which are made up of two or
more legs), we can then create these implied orders based on the actual prices of the other two
instruments.

In hardware, we then aggregate all of the known and implied instruments into an output frame. We then
send the data via UDP as a single package in a combined “book”. That information could then be read
and acted upon by an electronic traders.

Instrument
Registers

Simulated uop lIEnTer;nst N Inp#;g:;e
Market Data eriace

h 4

Reqgisters alculator Interface v Traders

Instrument p| Implied Book | [Ethemet [UDP | Electronic

Instrument
Registers

— il

DFE ENGINE

Fig. 2: Project Workflow

3.1 CPU Code

In software, we simulate the flow of input data coming from a market data source, configure the IP and
UDP socket for the engine, and connect to it with a CPU side socket. Since we are able to control both
the input as well as receive the output of the Maxeler engine, we can validate the results of the
calculation in software by mirroring the same calculations (albeit much slower) and testing to see if the
real output matches our expected output.

UDP >

Software
Hardware
CPU Code {Max DFE Engine)

(*.c) < UDP

Fig. 3: Run-time Software Hardware Interaction

3.1.1 Market Data Simulation

When receiving new stock information from a market data exchange such as GlobEx, the information is
sent as individual instrument packages in XML. The data is sent by /P Multicast in UDP because
dropped packages should not inhibit the flow of new data.

The data feed implementation used by the CME Group is called MDP 3.0. An MDP 3.0 packet contains
the following:

® Packet Header: Contains packet sequence number and sending time.

Message Size: field indicating size of message
Message Header: contains block length, Template ID, Schema ID, and Version
FIX header: Indicates FIX message type

FIX message body: event driven business data such as book updates and trade summary
Our simulated input data contains just the packet sequence number and message body.

We generate input data using a python script which generates randomized input data for the known
instrument IDs. In our simulation, to simplify the parsing of the input data, we format our input data as
Comma Separated Values (*.csv) instead of XML. In our Maxeler CPU code, we build a CSV parsing
function that receives the CSV file, parses it line by line and converts it into a usable package. In this
way, we are modeling an incremental data feed.

The data format that we are using is a simplified variant of the actual fields sent by an exchange. We
have chosen to use these fields in our input data:

Instrument ID
Side

Price Level
Price

Quantity

Each parameter is described in the Terminologies section. For more information on the implementation
of our random input data and an output CSV File, see:

generate_input.py
source data.csv

3.1.2 UDP Networking

We create payload packages for both the input from our incremental feed as well as for the output of
the ticker plant. We are sending messages by UDP as packages formatted with the five parameters
listed in the section above, and are receiving an output comprised of an order book made up of six
instruments. The packet size of the input data is 20 Bytes, but the corresponding output is 120 Bytes,
six times as large as the input but still relatively large.

UDP (User Datagram Protocol) is a networking protocol described in our Terminology section. In
order to create a UDP connection between the CPU and the Engine, we need to create two separate

sockets UDP sockets, one on the DFE IP and one with the CPU IP, on an unused port.

This is the relevant section from the CPU code:

/* Create DFE Socket, then listen */

const int port = 5008;

max_file t *maxfile = FieldAccumulator init();

max_engine_t *engine = max_load(maxfile, "*");

max_ip_config(engine, MAX_NET_CONNECTION_QSFP_TOP_10G_PORT1l, &dfe_ip, &netmask);
max_udp_socket_t *dfe_socket = max_udp_create_socket(engine, "udp_ch2_sfpl");
max_udp_bind(dfe_socket, port);

max_udp_connect(dfe_socket, &cpu_ip, port);

3.1.3 Result Validation

In order to check that our calculations are correct, we also perform the same operations in parallel on
the CPU. Instead of registers we use static variables and we use ternary operators similar to how they
are implemented in Kernel. We output this to an output package, and compare each value in the
received package and the “expected” package generated by

This was very useful in debugging and testing the engine code, making sure that the order book that is
returned is correct. In practice, when tackling a high throughput we will turn off the validation code,
since that would only slow down the ticker plant algorithm, but with low quantities of data it is useful
to have.

3.2 Data Flow Engine

Data Flow Engine (DFE) is the name of a paradigm in the MaxCompiler synthesis language for writing
optimized hardware code. This abstraction makes it easier to write hardware code without the need for
considering timing closures and cycle level verification. The DFE is comprised of a Manager which
orchestrates data flow and one or more Kernels which are responsible for implementing hardware
computation. MaxCompiler generates dataflow implementations which can then be called from the
CPU via the SLiC interface.

/ CPU Application

SLiC

Kernels
MaxelerOS
Dataflow Engine
[
Interconnect I {EE@ ‘ I
Fast Memory
(FMem) Manager

Fig. 4: Dataflow Engine Architecture

3.3 Kernel

The Kernel is responsible for performing calculations on the hardware. In our implementation, there is
only one Kernel responsible for parsing frames, calculating implied orders and generating the order
book as an output frame.

3.3.1 Input Frame Parsing
Frames arrive via the UDP stream, and we define the input frame format within the Kernel:

static class
DataIn extends FrameFormat

{
DataIn()

{
super(ByteOrder.LITTLE_ENDIAN);

addField("instrument_id", dfeInt(32));
addField("level", dfeInt(32));
addField("side", dfeInt(32));
addField("quantity", dfeInt(32));
addField("price", dfeInt(32));

Based on the values of the instrument_id, level and side fields, we route the incoming message into one
of the predeclared registers associated with that instrument. If no new data arrives, the value in the
register is held so that a register only updates when new data with its specific routing information
arrives.

3.3.2 Calculating Implied Orders

After a new data value arrives, we actively recalculate implied orders. Implied orders are orders that
can be built out of existing instruments. For example, take a calendar spread which involves the
simultaneous purchase of a future, A, and the sale of another later future, B. Even if you don’t have any
bidding prices for that calendar spread “A-B”, you can generate an implied bid for that spread by
looking at the top-level bids for A and the top-level asking price of B. The difference between those
two prices is the price of the implied bid of “A-B”, and the quantity is the minimum between “A” and
“B”.

Not only can you generate implied bids for spreads, but you can also calculate implied bids for
individual instruments as well if you know the calendar spread value as well as the bidding or asking
price of the other leg in the spread.

Here are the algorithms we are using in calculating the implied orders in Kernel. Given “A-B”, a spread
which involves the simultaneous purchase of instrument A and sale of instrument B, the implied prices
and quantities are:

Implied Bid Price of A =“A-B” Bid Price + “B” Ask Price
Implied Bid Quantity of A = min(“A-B” Bid Quantity, “B” Ask Quantity)

Implied Ask Price of B =“A” Bid Price - “A-B” Bid Price
Implied Ask Quantity of B =min(“A” Bid Quantity, “A-B” Bid Quantity)

Implied Bid Price of A-B = “A” Bid Price - “B” Asking Price
Implied Bid Quantity of A-B = min(“A” Bid Quantity, “B” Asking Quantity)

3.3.4 Output Format

The output data is six times as large as the input data, and is sent to the ethernet module. It involves the
fields in DataOut() displayed below.

static class
DataOut extends FrameFormat
{
DataOut ()
{
super(ByteOrder.LITTLE_ENDIAN);
addField("a_bid_instrument_id", dfeInt(32));
addField("a_bid_level", dfeInt(32));
addField("a_bid_side", dfeInt(32));
addField("a_bid_quantity", dfeInt(32));
addField("a_bid_price", dfeInt(32));

addField("ai_bid_instrument_id", dfeInt(32));
addField("ai_bid_level", dfeInt(32));
addField("ai_bid_side", dfeInt(32));
addField("ai_bid_quantity", dfeInt(32));
addField("ai_bid_price", dfeInt(32));

addField("b_ask_instrument_id", dfeInt(32));
addField("b_ask_level"”, dfeInt(32));
addField("b_ask_side", dfeInt(32));
addField("b_ask_quantity", dfeInt(32));
addField("b_ask_price", dfeInt(32));

addField("bi_ask_instrument_id", dfeInt(32));
addField("bi_ask_level", dfeInt(32));
addField("bi_ask_side", dfeInt(32));
addField("bi_ask_quantity", dfeInt(32));
addField("bi_ask_price", dfeInt(32));

addField("ab_bid_instrument_id", dfeInt(32));
addField("ab_bid_level", dfeInt(32));
addField("ab_bid_side", dfeInt(32));
addField("ab_bid_quantity", dfeInt(32));
addField("ab_bid price", dfeInt(32));

addField("abi_bid_instrument_id", dfeInt(32));
addField("abi_bid_level", dfeInt(32));
addField("abi_bid _side", dfelInt(32));
addField("abi_bid_quantity", dfeInt(32));
addField("abi_bid_price", dfeInt(32));

3.3.5 Framed Kernel

Network protocols enable interoperability between applications on a wide range of hosts and across a
wide range of networks. This requires a rigid set of interfaces and a simple way to communicate both
data and metadata to the network and remote hosts. To this end, small chunks of data known as
“frames” or “packets” are combined with “headers” from the different network layers before being
transmitted. These headers typically have a fixed or semi-fixed set of “fields” at well-known offsets
from the start of the header. The combination of in-band control, fixed-position fields, variable length
fields and unpredictable arrival time presents unique challenges to an otherwise static Dataflow model.
“Framed Kernels” in Maxeler greatly simplify dealing with data frames of varying length, and dealing
with fields in an intuitive way, regardless of the size of the underlying DFE link.

In a Framed Kernel, network data is considered as a stream of ‘frames’. Frames are typically received
on a Kernel input stream, processed in a suitable way and transmitted through a Kernel output stream.
Each frame consists of a fixed set of fields. Fields have familiar types, such as floating point or integer
numbers and may be fixed or variable size. The order of the fields in a frame as well as their type and
name is typically application-dependent and defined by the developer as a “frame format” which can be
associated with Kernel input or output streams.

A frame format may describe frames whose total size exceeds the width of the carrier stream. In this
case, sufficiently small segments of the frame are streamed sequentially and MaxCompiler

automatically manages the marshalling and unmarshalling of the segments.

We use framed kernels to employ an input stream of simulated futures prices, and an output stream of
orders. Our input and output frames contain fields for instrument ID, side, level, quantity, and price.

3.3.6 Kernel Graph

A kernel is a streaming core with a data flow described by a unidirectional graph without cycles. Kernel
graphs describe several different node types:

Computation Nodes

They perform arithmetic and logic operations (e.g., +, *, <, &) as well as type casts to convert between
floating point, fixed point and integer variables.

10

O

Value Nodes
They provide parameters which are either constant or set by the host application at runtime.

L]

Stream Offsets
They allow access to elements at different positions in data streams.

O

Multiplexer Nodes
They are nodes for decision making.

N

Counter Nodes
They are for catching specific stream positions such as boundary conditions.

O

1/0 Nodes
They connect the kernel to the manager and serve for streaming data in and out.

7

The Kernel graph for our Kernel generated by Maxeler is displayed below:

11

|

Fig 5. Kernel Graph

3.3 Manager

Manager

"FrameOut”
UDPF Stream

"Frameln” -

UDP Stream > Kernel

A 4

Fig. 6: Max Manager

The manager wraps kernels and orchestrates their data I/O. It also connects Kernels to the CPU, engine
RAM, other Kernels and other dataflow engines. The Manager, in addition to defining build
configurations, also declares:

“Frameln” UDP Stream
“FrameOut” UDP Stream
“FieldAccumulator” Kernel

4. Tool Chain

The Maxcompiler tool flow abstracts the cumbersome Quartus tool flow to simple specification of the
Kernel and the kernel manager.

12

4.1 Maxeler Framework

The Maxeler framework targets the Maxeler FPGA development platforms (Maxeler DFE accelerator
platforms) that posses the Altera Stratix V FPGAs that posses over 234,720 Adaptive Logic Modules
(ALMs) and over 2,560 M20K blocks offering maximum on chip memory and tremendous flexibility.

In the Maxeler framework, an extension of Java (MaxlJ) is used to design the hardware modules
(Kernel) where a majority of the computation is intended to happen. The Maxeler framework also has a
well defined set of Computational and Networking libraries to perform computations. The Dataflow
Engine (DFE) in dataflow programming refers to the hardware implementation by Maxeler. This
normally takes the input as a stream. These engines contain small amounts of local memories that are
attached by an interconnect to the CPU.

This is analogous to the Altera Quartus interface where:

Software Interface * ¢ files

Hardware Interface Data Flow Engine (DFE), Maxeler files and the Kernel Manager

One of the major advantages of using Maxeler is less compile time required for simulation. The
simulation run by Maxeler almost assures that the design is synthesizable and good to be implemented
on the hardware. The direct integration with the Quartus fitter and Assembler tool flow eases the tool
chain where the Maxeler framework first compiles the Hardware (Max files) into the equivalent VHDL
files, then the Host CPU code.

4.2 Max Workflow

13

Max Compiler

MaxIDE

* o files * maxj files

CPU Data Flow Engine

'

VHDL

Quartus Compilation l

Bitstream
Embedded
CPU Bitstream

Stratix V FPGA

MAX4N Platform

Fig. 7: Compilation Workflow
1. MaxJ Compilation

A hardware build automatically runs FPGA synthesis and backend tools and generates a file with the
FPGA configuration bitstream. The hardware build process further provides reports with estimates on
hardware resource usage and data for making performance projections. The host application is
compiled and linked with the .max file and the software part of MaxelerOS to the application
executable. This executable includes all the code necessary to deal with the acceleration hardware, such
as downloading the FPGA configuration and setting up the required data flows between CPU, FPGAs
and memories. MaxIDE compiles the MaxJ kernel and manager files into a massive number of VHDL
files (267 *.vhdl) . A subset of files is shown below

-PW-rw-r--. sv2340 sv2340 634K May 12 20:07 fieldSwapKernel.vhdl

1
-rw-rw-r--. 1 sv2340 sv2340 133K May 12 20:07 FPGAWrapperEntity Manager_FieldAccumulator.vhdl
-rw-rw-r--. 1 sv2340 sv2340 117K May 12 20:07 MAX4FPGATop.vhdl
-rw-rw-r--. 1 sv2340 sv2340 103K May 12 20:07 Manager_FieldAccumulator.vhdl
-rw-rw-r--. 1 sv2340 sv2340 78K May 12 20:07 MAX4NPeripheryTop.vhdl

Quartus creates a project file named MAX4NPeripheryTop.qpf

2. Quartus Synthesis

14

Quartus performs complete Analysis & Synthesis on a design, including technology mapping. Analysis
& Synthesis performs logic synthesis to minimize the logic usage of the design, and performs
technology mapping to implement the design logic using device resources such as logic elements.
Finally, Analysis & Synthesis generates a single project database integrating all the design files in a
design.

3. Placing & Routing

The Quartus Fitter matches the logic and timing requirements of the project with the available
resources of a Stratix V FPGA in the Max4N board. The Fitter assigns each logic function to the best
logic cell location for routing and timing, and selects appropriate interconnection paths and pin
assignments.

4. Quartus Assembler

The Quartus Assembler is the Compiler module that completes project processing by generating a
device programming image of the Stratix V FPGA.

5. TimeQuest Timing Analysis

Maxeler runs an extensive timing analysis to check for timing closure using the TimeQuest timing
analyzer. The Quartus II TimeQuest Timing Analyzer is a powerful ASIC-style timing analysis tool
that validates the timing performance of all logic in your design using an industry-standard constraint,
analysis, and reporting methodology. The TimeQuest Timing Analyzer returns the following Fmax
operating frequencies for the circuit.

Fmax 'S Restricted Fmax * Clack Name Mote
1 33333.33 MHz 800.0 MHz maxring_refclk limit due to minimum period restriction (tmin}
2 33333.33 MHz 800.0 MHz qsfp_refclk limit due to minimum period restriction (tmin)
3 293.0 MHz 293.0 MHz
4 210,53 MHz 210.53 MHz CLK_10G
5 204.37 MHz 204.37 MHz sv_reconfig_pma_testbus_clk_1
6 162.23 MHz 162.23 MHz STREAM_clkout0
T 15475 MHz 154.75 MHz PHY_QSFP_TOP|PHY|PHY|phy_l0gbase r..mm_interface_inst|pmatestbussel[0]
8 140.96 MHz 140.96 MHz PHY_QSFP_TOP|PHY|PHY|phy_l0gbase_r...mm_interface_inst|pmatestbussel[0]
9 133.08 MHz 133.08 MHz refclk_pci_exprass
10 113.68 MHz 113.68 MHz CLK_MGMT_100_RIGHT
11 52.91 MHz 52.91 MHz cclk

This panel reports FMAX for every clock in the design, regardless of the manually-specified clock
periods. FMAX is only computed for paths where the source and destination registers or ports are
driven by the same clock. Paths of different clocks, including generated clocks, are ignored.

6. Netlist Writer

During synthesis, Quartus generates a netlist that uses the primitives of the Altera library and routes it.
The Quartus RTL Viewer displays a schematic view of the design netlist after Analysis and Elaboration
is performed by the Quartus II software, but before technology mapping and any synthesis or fitter

15

optimizations. This view is not the final design structure because optimizations have not yet occurred.

This view most closely represents your original source design.

Netlist Viewer:

ol
1

Delving deeper into the RTL netlist, the field swap kernel manager is implemented as

Manager_FieldAccumulator_WrapperNodeEntity_fieldSwapKernel:fieldSwapKernel
N

clk_nobuf]

clk

clk

frameln_almost_empty

frameln_almost_empty

frameln_data[77..0]

frameln data[77..0]

frameln_done

frameln_done

~HeldSwapKernel_streamwrapper:inst_In31_streamingblock

active

active

frameln_empty

frameln_empty

frameln_read

frameln_read

frameOut_stall

frameOut_stall

frameOut data[76..0]

frameOut_data[76..0

register_clk

register_clk

frameOut_done

frameOut_done

register_in[7..0]|

register_in[7..0]

frameOut_valid

frameOut_valid

register_rotate

register_rotate

register out[7..0]

register_out[7..0]

register_stop,

register_stop

register_switch|

register_switch

clk_rst|

rst

16

4.2 Resource Utilization

e e +
; Flow Summary 5
e e e +

; Flow Status Successful - Wed May 13 19:13:08 2015

)) 3
; Quartus II 64-Bit Version ; 13.1.0 Build 162 10/23/2013 SJ Full Version ;
; Revision Name 5 MAX4NPeripheryTop H
; Top-level Entity Name 5 MAX4NPeripheryTop g
; Family ; Stratix V 5
; Device ; 5SGXMABN2F45C2 S
;5 Timing Models ; Final ;
; Logic utilization (in ALMs) ; 20,245 / 359,200 (6 %) 5
; Total registers 5 37492 5
; Total pins ; 129 / 1,064 (12 %) ;
; Total virtual pins ; 69 ;
; Total block memory bits ;5 1,948,042 / 54,067,200 (4 %) 3
; Total DSP Blocks 5 0/ 352 (0%) 5
; Total HSSI STD RX PCSs ; 9/ 48 (19 %) ;
; Total HSSI 10G RX PCSs ; 4/ 48 (8 %) g
; Total HSSI GEN3 RX PCSs ; 0/ 48 (0%) g
; Total HSSI PMA RX Deserializers ; 12 / 48 (25 %) ;
; Total HSSI STD TX PCSs ; 9/ 48 (19 %) ;
; Total HSSI 10G TX PCSs ; 4/ 48 (8 %) g
; Total HSSI GEN3 TX PCSs ; 0/ 48 (0%) g
; Total HSSI TX Channels ; 13 / 48 (27 %) ;
; Total HSSI PIPE GEN1_2s ; 9/ 48 (19 %) ;
; Total HSSI GEN3s 5 9/ 48 (19 %) g
; Total PLLs 5 4/98 (4%) 5
; Total DLLs 50/ 4 (0%) ;
+

5. Hardware

5.1 Max4N Platform

In this project we target the MAX4N FPGA accelerator platforms that possess the Stratix V
(5SGXMABN2F45C2)

R
)
:

17

Fig. 8: Max4N FPGA platform

5.1.1 QSFP Ports

The Max4N platform has two Quad Small Form-factor Pluggable (QSFP) ports. QSFP is a
hot-pluggable transceiver that is able to to instantiate up to four 10 Gbps ethernet modules, for a data
rate of 40 Gbps. In our ticker plant implementation, we are only using one of the two QSFP ports.

5.1.2 10-Gbps Ethernet

The 10-Gbps Ethernet IP core includes an Ethernet Media Access Control (MAC) with an Avalon
Streaming (Avalon-ST) interface on the client side, and a XAUI or a standard XGMII interface on the
network side. The XAUI interface is implemented as a hard IP in an Altera FPGA transceiver or as soft
logic, which results in a soft I0GBASE-X XAUI PCS. Data arrives in 8 bytes chunks at a rate of
156.25 Mhz.

10-Gbps Ethernet IP Core

. Optional (Note 1) {

10-Gbps XGMII XAUL
Avalon-ST Interface <& > Cineret MAC [—p| PCS = » PMA - P PHY Device
(datapath) : : Interface

Avalon-MM Interface 47# T

(control)

Fig. 9: Ethernet Core

5.3 Altera Stratix V FPGA

Resource intensive applications such as the Ticker plant design and other High Frequency Trading
applications require state of the art FPGAs that posses a higher count of logic elements and on chip
memory. State of the art FPGAs such as Altera’s Stratix V FPGAs and Xilinx’s Virtex 7 FPGAs suit
these applications. The Stratix V FPGAs are optimized for bandwidth-centric applications and
protocols, including the PCI Express bus. They are also efficient in handling data-intensive applications
for 40G/100G using the 10-Gbps ethernet modules.

The following table shows a comparison of resources in SoCKit Cyclone V vs Stratix V Max4N FPGA

platform.
FPGA Altera Cyclone V SCSXFC6D6F31C8ES Altera Stratix V
5SGXMABN2F45C2
Platform SoCKit Board Max4N Platform
ALMS 41,910 359,200
Block Memory Bits 5,662,720 54,067,200
DSP Blocks 112 352

18

5.4 Chip Utilization

Resource Utilisation on the Chip. The Maxeler-Quartus flow provides the resource utilization
results on the FPGA

m_
=

L -

[TET R E

R T

Fig. 10: Resource Utilisation

6. Conclusions

Mazxeler uses a powerful simulation system that simulates the entire system in much shorter time than
running the Quartus compilation flow would. This also gives us an assurance that our system is good to
be implemented on the FPGA

A sample selection of our output from Maxeler compilation and runtime is shown below

Thu 00:02: ===== Bytes Received: 120 =====

Thu ©0:02: [v] Instr A BID: Q = 19, Price = 127
Thu ©0:02: [v] Instr Ai BID: Q = 26, Price = 1298
Thu 00:02: [v] Instr B ASK: Q = 51, Price = 4612
Thu ©0:02: [v] Instr Bi ASK: Q = 19, Price = 3441
Thu 00:02: [v] Instr AB BID: Q = 26, Price = -3314
Thu 00:02: [v] Instr ABi BID: Q = 19, Price = -4485
Thu 00:02: ===== Bytes Received: 120 =====

Thu ©0:02: [v] Instr A BID: Q = 19, Price = 127
Thu ©0:02: [v] Instr Ai BID: Q = 26, Price = 1298
Thu ©0:02: [v] Instr B ASK: Q = 51, Price = 4612
Thu 00:02: [v] Instr Bi ASK: Q = 19, Price = 3441
Thu ©0:02: [v] Instr AB BID: Q = 26, Price = -3314
Thu 00:02: [v] Instr ABi BID: Q = 19, Price = -4485
Thu 00:02: ===== Bytes Received: 120 =====

Thu 00:02: [v] Instr A BID: = 19, Price = 127
Thu ©0:02: [v] Instr Ai BID: = 26, Price = -3017
Thu 00:02: [v] Instr B ASK: = 297
Thu 00:02: [v] Instr Bi ASK: = 19, Price = 3441
Thu 00:02: [v] Instr AB BID: = 26, Price = -3314

O O O OO
|
o]
=
&
o
]
=
0
]
|

19

Thu
Thu
Thu
Thu
Thu
Thu
Thu
Thu

00:
00:
00:
00:
00:
00:
00:
00:

02:
02:
02:
02:
02:
02:
02:
02:

[v]

[v]
[v]
[v]
[v]
[v]
(vl

Instr ABi BID:

Instr
Instr
Instr
Instr
Instr
Instr

A
Ai
B
Bi
AB
ABi

BID:
BID:
ASK:
ASK:
BID:
BID:

Q

Q
Q
Q
Q =
Q
Q

= 19,

120 ==

-170

= 127

-3017

= 297
= 3441
= -3314

-170

20

7. References

1]https://eventbooking.stfc.ac.uk/uploads/mew25/day11700maxeler.pdf
2]https://www.maxeler.com/media/documents/MaxelerWhitePaperMaxCompiler.pdf

[

[

[3]https://www.altera.com/en_US/pdfs/literature/ug/xcvr_user guide.pdf
[4]https://eventbooking.stfc.ac.uk/uploads/mew?25/day 1 1700maxeler.pdf
[
[6
[

5)http://www2.hmc.edu/~evans/e104112.pdf
|http://www.boerse-frankfurt.de/en/glossary/o/order+book+930
7|Narang, Rishi K. Inside the Black Box: A Simple Guide to Quantitative and High Frequency
Trading. Second ed. Print.
[8]https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/ug/archives/10g_ether
net user guide.pdf
[9]http://www.doc.ic.ac.uk/~georgig/OpenSPL.2014/lectures/OpenSPL_4.pdf

21

https://eventbooking.stfc.ac.uk/uploads/mew25/day11700maxeler.pdf
https://www.maxeler.com/media/documents/MaxelerWhitePaperMaxCompiler.pdf
https://www.altera.com/en_US/pdfs/literature/ug/xcvr_user_guide.pdf
https://eventbooking.stfc.ac.uk/uploads/mew25/day11700maxeler.pdf
http://www.boerse-frankfurt.de/en/glossary/o/order+book+930
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/ug/archives/10g_ethernet_user_guide.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/ug/archives/10g_ethernet_user_guide.pdf
http://www.doc.ic.ac.uk/~georgig/OpenSPL2014/lectures/OpenSPL_4.pdf

Appendix A: Terminology

Future

A futures contract allows a trader to undertake a contract to accept or make delivery of a commodity or
some kind of financial asset (a) in the future on a known date, (b) under specified conditions, (c) for a
price contracted today. The party to the contract who is agreeing to take delivery of the commodity is
long in the position, whereas the party who is agreeing to deliver the commodity is short in the
position. A speculator will benefit when she is long if the prices rise, short if the price falls. Through
submission of bids and asks, the exchange will match long orders with short orders, either with outside
traders or with their own trades

Futures can be used either to hedge or to speculate on the price movement of the underlying asset. For
example, a producer of corn could use futures to lock in a certain price and reduce risk (hedge). On the
other hand, anybody could speculate on the price movement of corn by going long or short using
futures. Airline companies may place hedges either based on future prices of jet fuel or on future prices
of jet fuel or on future prices of crude oil (which is the source of jet fuel).

Spread Trading

Spread trading is the simultaneous purchase of one security (i.e. stocks, futures contracts) combined
with the sale of another related security. The individual securities are called legs. Common spreads are
priced and traded as a unit on futures exchanges rather than as individual legs, thus ensuring
simultaneous execution and eliminating the execution risk of one leg executing but the other failing.
Spread trades are executed to attempt to profit from the widening or narrowing of the spread, rather
than from movement in the prices of the legs directly. There are several types of spreads, including:

Calendar Spreads

A Calendar Spread is a spread trade involving the simultaneous purchase of futures expiring on a
particular date and sale of the same instrument expiring on another date. The legs of the spread vary
only in expiration date.

Intercommodity Spreads
Intercommodity spreads are formed from two distinct but related commodities, reflecting the economic
relationship between them. An example would be a spread of apples and applesauce.

Ticker Plant

A ticker plant is a specialized software or hardware systems designed to handle collection and
throughput of an incoming data stream and updating the system’s order book’s states. which can then
be seen by traders or algorithms to understand the current state of

Order Book

22

An order book is used to pool, compare and match the volumes and prices of buy and sell orders for a
particular security. When several orders contain the same price, they are referred as a price level,
meaning that if, say, a bid comes at that price level, all the orders on that price level could potentially
fulfill that.

There are two general approaches to order execution: aggressive and passive. Aggressive orders are are
submitted to the marketplace and are generally unconditional. They can be filled in pieces or full at
whatever price prevails in the market at the time the order’s turn to be executed arrives (within
reasonable boundaries, as long as there is a bid or offer resting in the order book to take the other side
of the market order). In contrast, passive orders allow the trader to control the worst price at which he is
willing to transact, but the trader must accept that his order might not get executed at all or that only a
part of it might be executed.

Instrument ID
Our program gets a stream of data that includes prices and quantities for two futures, and their spread.
Each of the futures and their spread is indexed using an Instrument ID.

Side
Side indicates whether a future is a bid or an ask. 0 signifies a bid or an offer to buy, and 1 signifies and
ask or an offer to sell.

Price Level

The Price level of a bid or ask indicates how many other offers of the same side persist in the order
book that are a better offer than that particular bid or ask. Our engine operates at level 0 indicating that
it only considers the best current bid and ask of the stock.

Ethernet
The Ethernet access method is used to connect hosts in a company, home, or network; as well as to
connect a single host to a modem for Internet access.

Internet Protocol (IP)

The Internet Protocol is a set of rules for exchange of information between hosts on the Internet. Each
host that uses the Internet Protocol has at least one IP address that identifies it to all other devices on
the planet, just like a person might have a postal address.

User Datagram Protocol (UDP)
With UDP, computer applications can send messages, sometimes known as datagrams, to other hosts
on an Internet Protocol (IP) network without requiring other communications to set up special

transmission channels or data paths. UDP is known as unreliable as it does not guarantee that all data
with reach the intended destination in order.

23

Appendix B: Code

FieldAccumulatorCpuCode.c

/* Ticker Plant System Implemented in Max Compiler
* Columbia University: CSEE 4840, Spring 2015
* May 14th 2015

*

& - Gabriel Blanco

& - Suchith Vasudevan

& - Brian Bourn

& - David Naveen Dhas Arthur
*/

#define _GNU_SOURCE

#include <string.h>
#include <unistd.h>
#include <stdio.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netinet/tcp.h>

#include "Maxfiles.h"
#include <MaxSLiCInterface.h>

#define BUFFERSIZE 1024
#define FIELDS 5

struct input_data

{
int32_t instrument_id;
int32_t level;
int32_t side; // © is Bidding, 1 is Asking
int32_t quantity;
int32_t price;
¥

typedef struct output_data
{
struct input_data a_bid;
struct input_data ai_bid;
struct input_data b_ask;
struct input_data bi_ask;
struct input_data ab_bid;
struct input_data abi_bid;
} __attribute__ ((__packed__)) frame_t;

static void calculateDeltas(int, struct input_data *);

static void validateData(struct input_data *, struct output_data *);

static int create_cpu_udp_socket(struct in_addr *, struct in_addr *, int);
static void parse(char *, struct input_data *);

static int isEqual(struct input_data *, struct input_data *);

int
main(int argc, char *argv[])
{

if(argc != 4)

printf("Usage: %s <dfe_ip> <cpu_ip> <netmask>\n", argv[0]);

24

return 1;

}

struct in_addr dfe_ip, cpu_ip, netmask;
const int port = 5008;
char 1line[BUFFERSIZE];

inet_aton(argv[1l], &dfe_ip);
inet_aton(argv[2], &cpu_ip);
inet_aton(argv[3], &netmask);

// Create DFE Socket, then listen

max_file_t *maxfile = FieldAccumulator_init();

max_engine_t *engine = max_load(maxfile, "*");

max_ip_config(engine, MAX_NET_CONNECTION_QSFP_TOP_10G_PORT1, &dfe_ip, &netmask);
max_udp_socket_t *dfe_socket = max_udp_create_socket(engine, "udp_ch2_sfpl");
max_udp_bind(dfe_socket, port);

max_udp_connect(dfe_socket, &cpu_ip, port);

int cpu_socket = create_cpu_udp_socket(&cpu_ip, &dfe_ip, port);

// CSV Input Data Parsing
FILE *stream = fopen("./source_data2.csv", "r");

if(stream == NULL)

{
printf("fopen() failed ");
return -1 ;

}

// Ignore Header File
fgets(line, BUFFERSIZE, stream);

int linum = 0;
while (fgets(line, sizeof(line), stream))

struct input_data data;

parse(line, &data);
calculateDeltas(cpu_socket, &data);
linum++;

}

printf("number of lines: %d\n",linum);

max_udp_close(dfe_socket);
max_unload(engine);
max_file_free(maxfile);

return 9;
}
/*
* Parses a CSV file into an input structs
*/

static void
parse(char *line, struct input_data *in)
{

int i;

int fv[FIELDS];

char *element = strtok(line, ",");
fv[@] = atoi(element);

for (i=1; i<FIELDS; i++)

25

char *element = strtok(NULL, ",");
fv[i] = atoi(element);
}
in->instrument_id = fv[0];
in->level = fv[1];
in->side = fv[2];
in->quantity = fv[3];
in->price = fv[4];
}
/*

* Sending and Receiving input data via UDP, then validating and printing results

*/

static void

calculateDeltas(int sock, struct input_data *data)

{

frame_t instruments, instruments_exp;

int32_t byt
num_instr =

// Send Dat

esRecv, num_instr;

(int32_t)sizeof(struct output_data) / (int32_t)sizeof(struct input_data);

a to Engine via TCP

send(sock, data, sizeof(struct input_data), 0);

// Receive Data from Engine via TCP

validateData(data, &instruments_exp);

bytesRecv =
if (bytesRe
{

recv(sock, &instruments, sizeof(struct output_data), 0);

cv == -1)

"No bytes recv\n");

3

else if (bytesRecv < (int32_t)sizeof(struct output_data))

printf("WARNING: Received less bytes than expected\n");

printf(
exit(@e)
{
}
printf("===

char valid

valid[@] =
valid[1] =
valid[2] =
valid[3] =
valid[4] =
valid[5] =

printf("[%c
instruments.a_b
printf("[%c

instruments.ai_|

printf("[%c
instruments.b_a
printf("[%c

instruments.bi_.

printf("[%c

instruments.ab_|

printf("[%c
instruments.abi

}

[num_instr];

isEqual(&instruments
isEqual(&instruments
isEqual(&instruments
isEqual(&instruments
isEqual(&instruments
isEqual(&instruments

] Instr A BID:
id.price);

] Instr Ai BID:
bid.price);

] Instr B ASK:
sk.price);

] Instr Bi ASK:
ask.price);

] Instr AB BID:
bid.price);

] Instr ABi BID:

o O O O O o

_bid.price);

.a_bid, &instruments_exp.a_bid) ?
.ai_bid, &instruments_exp.ai_bid) ?
.b_ask, &instruments_exp.b_ask) ?
.bi_ask, &instruments_exp.bi_ask) ?
.ab_bid, &instruments_exp.ab_bid) ?
.abi_bid, &instruments_exp.abi_bid) ?
= %d,
= %d,
= %d,
= %d,
= %d,

= %d,

=\n", bytesRecv);

Price

Price

Price

Price

Price

Price

%d\n",
%d\n",
%d\n",
%d\n",
%d\n",

%d\n",

26

valid[e],
valid[1],
valid[2],
valid[3],
valid[4],

valid[5],

instruments.

instruments.

instruments.

instruments.

instruments.

instruments.

a_bid.quantity,
ai_bid.quantity,
b_ask.quantity,
bi_ask.quantity,
ab_bid.quantity,

abi_bid.quantity,

/*
* Runs the same calculations as in the DFE Engine to Validate the received results
*/

static void

validateData(struct input_data *in, struct output_data *out)

{
/] -------- Expected Value, Calculated in Software --------

// Instrument A

static int32_t a_bidprice =
static int32_t a_bidquant =
static int32_t a_askprice =
static int32_t a_askquant =

e e o

[OIO RG]
-

e

// Instrument B

static int32_t b_bidprice =
static int32_t b_bidquant =
static int32_t b_askprice =
static int32_t b_askquant =

. e

-

(SO
-

// Instrument A-B Spread

static int32_t ab_bidprice =
static int32_t ab_bidquant =
static int32_t ab_askprice =
static int32_t ab_askquant =

.« e we

[SIGI R
-

// Update Correct Register

if(in->instrument_id==0 && in->side==0 && in->level==0) { a_bidprice = in->price; a_bidquant
in->quantity; }

if(in->instrument_id==0 && in->side==1 && in->level==0) { a_askprice = in->price; a_askquant
in->quantity; }

if(in->instrument_id==1 && in->side==0 && in->level==0) { b_bidprice = in->price; b_bidquant
in->quantity; }

if(in->instrument_id==1 && in->side==1 && in->level==0) { b_askprice = in->price; b_askquant
in->quantity; }

if(in->instrument_id==2 && in->side==0 && in->level==0) { ab_bidprice = in->price; ab_bidquant
in->quantity; }

if(in->instrument_id==2 && in->side==1 && in->level==0) { ab_askprice
in->quantity; }

in->price; ab_askquant

// Implied Instrument

int32_t ai_bidquant = ab_bidquant < b_askquant ? ab_bidquant : b_askquant;
int32_t ai_bidprice = ab_bidprice + b_askprice;

int32_t bi_askquant = a_bidquant < ab_bidquant ? a_bidquant : ab_bidquant;
int32_t bi_askprice = a_bidprice - ab_bidprice;

int32_t abi_bidquant = a_bidquant < b_askquant ? a_bidquant : b_askquant;
int32_t abi_bidprice = a_bidprice - b_askprice;

// Output Parameters
out->a_bid.instrument_id = 0;
out->a_bid.level = 0;
out->a_bid.side = 0;
out->a_bid.quantity = a_bidquant;
out->a_bid.price = a_bidprice;

out->ai_bid.instrument_id = 0;
out->ai_bid.level = 0;
out->ai_bid.side = 0;
out->ai_bid.quantity = ai_bidquant;
out->ai_bid.price = ai_bidprice;

out->b_ask.instrument_id = 1;
out->b_ask.level = 0;
out->b_ask.side = 1;
out->b_ask.quantity = b_askquant;

27

out->b_ask.price = b_askprice;

out->bi_ask.instrument_id = 1;
out->bi_ask.level = 0;
out->bi_ask.side = 1;
out->bi_ask.quantity = bi_askquant;
out->bi_ask.price = bi_askprice;

out->ab_bid.instrument_id = 2;
out->ab_bid.level = 0;
out->ab_bid.side = 0;
out->ab_bid.quantity = ab_bidquant;
out->ab_bid.price = ab_bidprice;

out->abi_bid.instrument_id = 2;
out->abi_bid.level = ©;
out->abi_bid.side = ©;
out->abi_bid.quantity = abi_bidquant;
out->abi_bid.price = abi_bidprice;

/*
* Create a UDP Socket on the CPU
*/
static int
create_cpu_udp_socket(struct in_addr *local_ip, struct in_addr *remote_ip, int port)

{
int sock = socket(AF_INET, SOCK_DGRAM, 0);

struct sockaddr_in cpu;
memset (&cpu, 0, sizeof(cpu));
cpu.sin_family = AF_INET;
cpu.sin_port = htons(port);

cpu.sin_addr = *1local_ip;
bind(sock, (struct sockaddr *)&cpu, sizeof(cpu));

cpu.sin_addr = *remote_ip;
connect(sock, (const struct sockaddr*) &cpu, sizeof(cpu));

return sock;

}

/*

* Comparison between input data structs, used for validation
*/

static int

iskEqual(struct input_data *a, struct input_data *b)

{

if (a->instrument_id != b->instrument_id)

{
printf("ID MISMATCH\n");
return 0;

else if (a->level != b->level)

{
printf("LEVEL MISMATCH\n");
return 0;

else if (a->side != b->side)

{
printf("SIDE MISMATCH\n");
return 0;

}

28

else if (a->quantity != b->quantity)

{
printf("QUANTITY MISMATCH\n");
return 0;

else if (a->price != b->price)

{
printf("PRICE MISMATCH\n");
return 0;

¥

return 1;

FieldAccumulatorKernel.maxj

/* Ticker Plant System Implemented in Max Compiler
* Columbia University: CSEE 4840, Spring 2015
* May 14th 2015

*

& - Gabriel Blanco

& - Suchith Vasudevan

& - Brian Bourn

& - David Naveen Dhas Arthur

*/

package fieldaccumulator;

import
import
import
import
import
import
import
import
import

public

{

com

com.
com.
com.
com.

com

com.
com.
com.

.maxeler.
maxeler.
maxeler.
maxeler.
maxeler.
.maxeler.
maxeler.

maxeler

class
FieldAccumulatorKernel extends FramedKernel

maxcompiler.v2.kernelcompiler.KernelParameters;
maxcompiler.v2.kernelcompiler.stdlib.Reductions;
maxcompiler.v2.kernelcompiler.types.base.DFEVar;
networking.vl.framed_kernels.ByteOrder;
networking.vl.framed_kernels.FrameData;
networking.vl.framed_kernels.FrameFormat;
networking.vl.framed_kernels.FramedKernel;

.networking.vl.kernel_types.UDPOneToOneRXType;
maxeler.

networking.vl.kernel_types.UDPOneToOneTXType;

// Input Frame Format
static class
DataIn extends FrameFormat

{

}

DataIn()

{

super(ByteOrder.LITTLE_ENDIAN);
addField("instrument_id", dfeInt(32));
addField("level"”, dfeInt(32));
addField("side", dfeInt(32));
addField("quantity", dfeInt(32));
addField("price", dfeInt(32));

// Output Frame Format
static class
DataOut extends FrameFormat

{

DataOut ()

{

29

super(ByteOrder.LITTLE_ENDIAN);
addField("a_bid_instrument_id", dfeInt(32));
addField("a_bid_level", dfeInt(32));
addField("a_bid_side", dfeInt(32));
addField("a_bid_quantity", dfeInt(32));
addField("a_bid_price", dfeInt(32));

addField("ai_bid_instrument_id", dfeInt(32));
addField("ai_bid_level", dfeInt(32));
addField("ai_bid_side", dfeInt(32));
addField("ai_bid_quantity", dfeInt(32));
addField("ai_bid_price", dfeInt(32));

addField("b_ask_instrument_id", dfeInt(32));
addField("b_ask_level", dfeInt(32));
addField("b_ask_side", dfeInt(32));
addField("b_ask_quantity", dfeInt(32));
addField("b_ask_price", dfeInt(32));

addField("bi_ask_instrument_id", dfeInt(32));
addField("bi_ask_level", dfeInt(32));
addField("bi_ask_side", dfeInt(32));
addField("bi_ask_quantity", dfeInt(32));
addField("bi_ask_price", dfeInt(32));

addField("ab_bid_instrument_id", dfeInt(32));
addField("ab_bid_level", dfeInt(32));
addField("ab_bid_side", dfeInt(32));
addField("ab_bid_quantity", dfeInt(32));
addField("ab_bid_price", dfeInt(32));

addField("abi_bid_instrument_id", dfeInt(32));
addField("abi_bid_level"”, dfeInt(32));
addField("abi_bid_side", dfeInt(32));
addField("abi_bid_quantity", dfeInt(32));
addField("abi_bid_price", dfeInt(32));

}

// Kernel Computation
public FieldAccumulatorKernel(KernelParameters parameters)

{

super(parameters);

// Bid Registers

DFEVar a_bidprice = dfeInt(32).newInstance(this);
DFEVar a_bidquant = dfeInt(32).newInstance(this);
DFEVar b_bidprice = dfeInt(32).newInstance(this);
DFEVar b_bidquant = dfeInt(32).newInstance(this);
DFEVar ab_bidprice = dfeInt(32).newInstance(this);
DFEVar ab_bidquant = dfeInt(32).newInstance(this);

//Ask Registers

DFEVar a_askprice = dfeInt(32).newInstance(this);
DFEVar a_askquant = dfeInt(32).newInstance(this);
DFEVar b_askprice = dfeInt(32).newInstance(this);
DFEVar b_askquant = dfeInt(32).newInstance(this);
DFEVar ab_askprice = dfeInt(32).newInstance(this);
DFEVar ab_askquant = dfeInt(32).newInstance(this);

/* Declare Frame In */

FrameData<DataIn> frameIn = io.frameInput("frameIn", new Dataln(),

pushResetBetweenFrames(false);

30

new UDPOneToOneRXType());

// Conditional

DFEVar a_bid = frameIn["instrument_id"].eq(constant.var(dfeInt(32), 0)) &
frameIn["level"].eq(constant.var(dfeInt(32), 0)) &
frameIn["side"].eq(constant.var(dfeInt(32), 0));

DFEVar b_bid = frameIn["instrument_id"].eq(constant.var(dfeInt(32), 1)) &
frameIn["level"].eq(constant.var(dfeInt(32), 0)) &
frameIn["side"].eq(constant.var(dfeInt(32), 0));

DFEVar ab_bid = frameIn["instrument_id"].eq(constant.var(dfeInt(32), 2)) &
frameIn["level"].eq(constant.var(dfeInt(32), 0)) &
frameIn["side"].eq(constant.var(dfeInt(32), 0));

DFEVar a_ask = frameIn["instrument_id"].eq(constant.var(dfeInt(32), 0)) &
frameIn["level"].eq(constant.var(dfeInt(32), 0)) &
frameIn["side"].eq(constant.var(dfeInt(32), 1));

DFEVar b_ask = frameIn["instrument_id"].eq(constant.var(dfeInt(32), 1)) &
frameIn["level"].eq(constant.var(dfeInt(32), 0)) &
frameIn["side"].eq(constant.var(dfeInt(32), 1));

DFEVar ab_ask = frameIn["instrument_id"].eq(constant.var(dfeInt(32), 2)) &
frameIn["level"].eq(constant.var(dfeInt(32), 0)) &
frameIn["side"].eq(constant.var(dfeInt(32), 1));

// Update Register Value

a_bidprice = Reductions.streamHold(frameIn["price"], a_bid);
a_bidquant = Reductions.streamHold(frameIn["quantity"], a_bid);
b_bidprice = Reductions.streamHold(frameIn["price"], b_bid);

b_bidquant = Reductions.streamHold(frameIn["quantity"], b_bid);
ab_bidprice = Reductions.streamHold(frameIn["price"], ab_bid);
ab_bidquant = Reductions.streamHold(frameIn["quantity"], ab_bid);

a_askprice = Reductions.streamHold(frameIn["price"], a_ask);
a_askquant = Reductions.streamHold(frameIn["quantity"], a_ask);
b_askprice = Reductions.streamHold(frameIn["price"], b_ask);

b_askquant = Reductions.streamHold(frameIn["quantity"], b_ask);
ab_askprice = Reductions.streamHold(frameIn["price"], ab_ask);
ab_askquant = Reductions.streamHold(frameIn["quantity"], ab_ask);

popResetBetweenFrames();

// Calculate Implied Prices and Quantities

DFEVar ai_bidquant = ab_bidquant < b_askquant ? ab_bidquant : b_askquant;
DFEVar ai_bidprice = ab_bidprice + b_askprice;

DFEVar bi_askquant = a_bidquant < ab_bidquant ? a_bidquant : ab_bidquant;
DFEVar bi_askprice = a_bidprice - ab_bidprice;

DFEVar abi_bidquant = a_bidquant < b_askquant ? a_bidquant : b_askquant;
DFEVar abi_bidprice = a_bidprice - b_askprice;

// Declare Frame Out
FrameData<DataOut> frameOut = new FrameData<DataOut>(this, new DataOut(), new
UDPONneToOneTXType());

frameOut["a_bid_instrument_id"] <== constant.var(dfeInt(32), 0);
frameOut["a_bid_level"] <== constant.var(dfeInt(32), 0);
frameOut["a_bid_side"] <== constant.var(dfeInt(32), 0); // Bidding
frameOut["a_bid_quantity"] <== a_bidquant;

frameOut["a_bid_price"] <== a_bidprice;

frameOut["ai_bid_instrument_id"] <== constant.var(dfeInt(32), 0);
frameOut["ai_bid_level"] <== constant.var(dfeInt(32), 0);
frameOut["ai_bid_side"] <== constant.var(dfeInt(32), @); // Bidding
frameOut["ai_bid_quantity"] <== ai_bidquant;
frameOut["ai_bid_price"] <== ai_bidprice;

31

frameOut["b_ask_instrument_id"] <== constant.var(dfeInt(32), 1);
frameOut["b_ask_level"] <== constant.var(dfeInt(32), 0);
frameOut["b_ask_side"] <== constant.var(dfeInt(32), 1); // Bidding
frameOut["b_ask_quantity"] <== b_askquant;

frameOut["b_ask_price"] <== b_askprice;

frameOut["bi_ask_instrument_id"] <== constant.var(dfeInt(32), 1);
frameOut["bi_ask_level"] <== constant.var(dfeInt(32), 0);
frameOut["bi_ask_side"] <== constant.var(dfeInt(32), 1); // Bidding
frameOut["bi_ask_quantity"] <== bi_askquant;
frameOut["bi_ask_price"] <== bi_askprice;

frameOut["ab_bid_instrument_id"] <== constant.var(dfeInt(32), 2);
frameOut["ab_bid_level"] <== constant.var(dfeInt(32), 0);
frameOut["ab_bid_side"] <== constant.var(dfeInt(32), 0); // Bidding
frameOut["ab_bid_quantity"] <== ab_bidquant;
frameOut["ab_bid_price"] <== ab_bidprice;

frameOut["abi_bid_instrument_id"] <== constant.var(dfeInt(32), 2);
frameOut["abi_bid_level"] <== constant.var(dfeInt(32), 0);
frameOut["abi_bid_side"] <== constant.var(dfeInt(32), 0); // Bidding
frameOut["abi_bid_quantity"] <== abi_bidquant;
frameOut["abi_bid_price"] <== abi_bidprice;

frameOut.linkfield[UDPOneToOneTXType.SOCKET] <==

frameIn.linkfield[UDPOneToOneRXType.SOCKET];

io.frameOutput("frameOut", frameOut);

FieldAccumulatorManager.maxj

/* Ticker Plant System Implemented in Max Compiler
* Columbia University: CSEE 4840, Spring 2015

* May
*

* X X X

*/

14th 2015

Gabriel Blanco

Suchith Vasudevan

Brian Bourn

David Naveen Dhas Arthur

package fieldaccumulator;

import
import
import
import
import
import
import
import

public

com.maxeler.maxcompiler.v2.build.EngineParameters;
com.maxeler.maxcompiler.v2.managers.BuildConfig;
com.maxeler.maxcompiler.v2.managers.custom.blocks.KernelBlock;
com.maxeler.networking.vl.managers.NetworkManager;
com.maxeler.networking.vl.managers.netlib.Max4NetworkConnection;
com.maxeler.networking.vl.managers.netlib.UDPChecksumMode;
com.maxeler.networking.vl.managers.netlib.UDPConnectionMode;
com.maxeler.networking.vl.managers.netlib.UDPStream;

class

FieldAccumulatorManager extends NetworkManager

{

public
FieldAccumulatorManager(EngineParameters configuration)

{

super(configuration);

32

UDPStream frameIn = addUDPStream("udp_ch2_sfpl", Max4NetworkConnection.QSFP_TOP_10G_PORT1,
UDPConnectionMode.OneToOne, UDPChecksumMode.DropBadFrames);

UDPStream frameOut = addUDPStream("frameOut", Max4NetworkConnection.QSFP_TOP_10G_PORT1,
UDPConnectionMode.OneToOne, UDPChecksumMode.DropBadFrames);

KernelBlock kernel = addKernel(new
FieldAccumulatorKernel (makeKernelParameters("fieldSwapKernel")));

kernel.getInput("frameIn") <== frameln.getReceiveStream();

frameOut.getTransmitStream() <== kernel.getOutput("frameOut");

}

public static void
main(String[] args)

FieldAccumulatorEngineParameters params = new FieldAccumulatorEngineParameters(args);
FieldAccumulatorManager m = new FieldAccumulatorManager(params);

BuildConfig buildConfig = m.getBuildConfig();
buildConfig.setMPPRCostTableSearchRange(params.getMPPRStartCT(), params.getMPPRENndCT());
buildConfig.setMPPRParallelism(params.getMPPRThreads());
buildConfig.setMPPRRetryNearMissesThreshold(params.getMPPRRetryThreshold());

m.build();

generate_input.py

Ticker Plant System Implemented in Max Compiler
Columbia University: CSEE 4840, Spring 2015
May 14th 2015

Gabriel Blanco

Suchith Vasudevan

- Brian Bourn

David Naveen Dhas Arthur

H B H HH
1

import random
NUMLINES = 500
ids = [0, 1, 2]
levels = [@]
sides = [0, 1]
spreads = [2]
print("instrument_id, level,side,quantity,price")
for i in range(NUMLINES):
instrument_id = random.choice(ids)
side = random.choice(sides)

level = random.choice(levels)

quantity = random.randint(1, 100)
price = random.randint(1, 5000)

if instrument_id in spreads:
price = random.randint(-5000, 5000)

print("{},{},{},{},{}".format(instrument_id, level, side, quantity, price))

33

source data.csv

instrument_id,level,side,quantity,price

3,1293

199

-

3

s ,12 =231
,21,1229
,19,1496

-

-

3

-

3

-

3

-

3

-

)

-

3

-

3

-

)

-
-

-

3

-

3

-

3

-

E Rt

-

3

-

3

s ,34 1151

k)

-

-

»99

-

PNl

-

PN]

o,
1
2,
,10,1371
,48,-530
4
3
3

-

3

-

r
1,
o,
1
1
0
1
1
0
1
1
0
1
1
e
1
1
)
1
1
)
1
1
)
,1
1,48,1477
0,32,1336
1,31,-142
,1,34,1135
,0,29,1315

1

1

o,

1

1,

0

1

1

e

1

1

)

1

1

)

1

1

)

1

1

0

1

1,

0

1,

1

0

1

1

19,4,

-

19

-

)

-

2
,1,-296
,16,1025
3
2

-
-

-

3

7,1284
7,-571
,1,29,1387
,0,11,1270
,40,-256
,15,1328
,39,1417
,36,258

,49,1385
,44,1141
,1,26,549

,1,29,1255
,24,1303

-

)

-

PN]

-

-

-

3

-

3

-

3

19

-

)

199

-

-

-

3

-
-

,24 1431

-

3

-

3

-

)

3

s ,32 1257
,1,15,386

3

-

-

-

,17 1326
20,145
,28,1321
,32,1058
,34,215
,27,1365

-

3

-

3

-

3

-

)

199

-

ONRFRFONRONROMNMNRFRONRFRFONRONRPRONRFRFONRFRFONRONRPRONRPRONREFONRONRPRONREPRONMNREFONRONRO
-
(O ORI RGE G EGRORO RO R RTOR O R G RGRTOR O RO R RO RO R G R RO RO RGBT RO R ORI R RO RO RO B RTR O RGBT RO ROBE RO RO R G RGRORT OB OGR RO OR G R RE OB T

3

o] A OV O m m m 00 AN IN O ANV ANAONTO® 0O < O WV (o] NN OOV < oo m (<) n n -

O VWO EHEATOIOIOAOANRNEHMUOLOWOVXOANOOANINTLLNOWAOAOONEHOUINOOMANO LWL M 00 v v~ O 0NN MOWOWONLOVULNANO® i 00 I~
S oA AaNOSSSTTIdgST AN NANASTITNAdAddTIDNddORNNOANOANOOOANS NI MMOONHdtTdANANODMLAANANMOAHO® S W
A Hdd T NAOAASSAA T AN 1T A T AdAd T AdAd T AddSSdd T A0 A dAA T A MA®OOHAM I A | AHONHS o 00« — 0
Ammaana ar A aa A aa A a ard aa A an A aaa aaaad aaaal™ Al A A aaa adAd aard a A aa ad a add ad A ad Al
MAOTN ad O NONTANO® ~- OaRNANANNNMNMMEANOVOATS AN H0W A aF ~"0000NWVINO® A a0 aNLINANOAN A~a0N A0 ~NO® avl -
MadgdgNaANmMmMAaMMmMASdTNddRNSANSTFANNASTIATATSTOANANNNANANTMAddTdmMadooooaNMINTANdMAdMNMSt AddooN—AM
T I T T T T D N S e N T T N T N S S S S WS S P

A A& A a A A
AN A AN AN O A ANOOA AN ANOA AN ANOA NI AN AN ANOA ANOA AN ANOA NI AN NI AN NOAANG® AN

35

0,0,1,25,1395
1,0,0,6,1266
2,0,1,29,75
0,0,1,31,1295
1,0,0,36,1265
2,0,1,6,-32
0,0,1,11,1380
1,0,0,6,1079
2,0,1,14,100
9,0,1,33,1172
1,0,0,2,1297
2,0,1,30,-19
9,0,1,41,1012
1,0,0,5,1261
2,0,1,36,-693
9,0,1,11,1194
1,0,0,10,1425
2,0,1,30,240
9,0,1,41,1332
1,0,0,0,1083
2,0,1,38,682
9,0,1,35,1116
1,0,0,36,1044
2,0,1,9,-420
0,0,1,21,1436
1,0,0,25,1477
2,0,1,25,-498
0,0,1,25,1473
1,0,0,5,1018
2,0,1,30,544
9,0,1,29,1129
1,0,0,7,1235
2,0,1,43,-523
0,0,1,3,1178
1,0,0,34,1013
2,0,1,33,-120
0,0,1,4,1142
1,0,0,28,1188
2,0,1,3,-524
9,0,1,37,1079
1,0,0,49,1350
2,0,1,25,-700
9,0,1,23,1493
1,0,0,33,1020
2,0,1,24,448
0,0,1,19,1207
1,0,0,31,1194
2,0,1,43,77
0,0,1,0,1337
1,0,0,40,1288
2,0,1,20,308
0,0,1,42,1497
1,0,0,49,1266
2,0,1,12,-262
0,0,1,41,1079
1,0,0,19,1189
2,0,1,47,222
0,0,1,9,1284
1,0,0,46,1331
2,0,1,31,-245
9,0,1,24,1028
1,0,0,28,1013
2,0,1,22,-235
9,0,1,26,1186
1,0,0,41,1442

19, Y,

36

N N ® 00 m T = mA VW WANM M AN 0® N WO o — 0= N m a m NN m) — < n ® ®
n N o ® NV aN MANASTAONAOARNNINHMOON® 0 O LN < 0 0T WOMWOWE S A m o — ® 0 © In n N~ OWONMM NS IO 00 A
®m o NIMRANAANMAO AN dAddNEMNMaAdd M NIEISIITA ATNAONSTOAONTETAT N® a CVTaATOMOOUTMAN o
NAddNAddAd T ddNAdAd T A TAdd T AdAdNdd T dd T ddNAdA T Add-ddMAd-dNAONAdANNM AdHONNANST oS o
I m al a a ard a a a a a ard & a a2 a A a A a A aa A maa A A aaaa a0 aAal oA A AR HAM A A A A A A A oA -
AN A0S ANINANWOOAD AMNNNHOMANONMWOWOOMUONMINGOAANNKN ~adIN ad AadWOMN a a a aM alN a a 20 ~F N
tHddoeomMItTOTMAddNaaTMNMATSAIMANdTNANATMNOMeAaMMNANNNAMNMOETMOMAANNOMNNOIMNSTANOO®OANNST I oS
N A S T S T e S N A T N
Ao A1 dAd 0 dd0ddddd A1 A1 d A0 A1 A A0 A 1A A A A A HO A A A A O A A A A A A A A ® — H

A A& A A A @A
(SRR RO R VR VRNV RN O RN CVRE VRO RO R WV VROV IO B OV OV O IO IOV OV BINOO IO B OV OV IOV IO IOV IOV IOV IO I OV OV O IOV I GV ROV IOV IO B OV OV ROV IO B OV OV RO IO IOV OV ROV IO I OOV ROV IO I OV OV ROV RO B O IOV R OV R)
A A
NOrdA AN ANOA NI AN NI AN NOA ANOOA ANOA NI ANOEA NI AN ANOA ANOOA ANOOA NI AN NOOA NO®OANO®

37

< O 00 M 00 N n N OV N < NN e < [\ ") O N~ S 0 (o'}
n < ®© 00 W0 M N NS OMUOVUAOH OO MININOANOH WOV S VoV ANNMMMHAHO®OO AN oM
MNMINed NSO IINNUOUdTLVLOUMHdOVUSSHOVUINMANOTANMNMNANOHIOIOTTOOAAaTTMNMATANNIIENNGO I
M1 A A NS T O N A A A O AN T AN dN A A A A OO MDA M
Y a a a a a a ad T ANHEA A ard a ard a A al A A a A a A A a A a a a a a a a a1 Al -
ANINTINONA A a a a adNAN aNS aFTON a4 aNEMUOOAOAOENUOVLOVUOVWOUOOMSTOOL a a aM Al
N MNdeaddeodmmmnmeadodonNhOoOANTOANANdddaNLOUNAANANCdASTANTITNANANSTAANANMAEADN A AN
A M A& A oA A A
O H 1O AT OO A OO AT OO AT A 1O AT A A A A AT OO ® O

A &
[SICR RN RGN CVRNCO RN O R GV RE VRO R OO WV R VROV IO B OV ROV IO IOV OV ROV IO R OOV IOV IO IOV ROV IOV I O OV ROV IO O IO IOV OV OO IO B OV ROV OO IS ROV R)
A A
AN A AN AN O ANOOA AN ANOA ANOOIA AN ANOOIA ANOANOA ANOOANOAANOOANO® N

38

