
LABYRINTH
Dijkstra’s implementation on FPGA

Ariel Faria

Michelle Valente

Utkarsh Gupta

Veton Saliu

Under the guidance of – Prof. Stephen Edwards

CSEE 4840
Embedded Systems

Overview and objectives

• Single source shortest path

• Dijkstra’s and properties

• Sequential queues and growth

• Advantages of Dijkstra’s on reconfigurable hardware and
applications

• In particular maze router – CAD APR

• Implement the algorithm on FPGA and compute best path
on hardware
– Scale up to accommodate more nodes

– Display the solved maze on the monitor

– Benchmarking time

Dijkstra’s algorithm

Cormen, Thomas H.; Leiserson, Charles E.; Rivest, Ronald L.; Stein, Clifford (2001). "Section 24.3: Dijkstra's algorithm". Introduction to

Algorithms (Second ed.). MIT Press and McGraw-Hill. pp. 595–601. ISBN 0-262-03293-7.

Project Flow

Software prototype

•To understand the steps and
constraints of the
algorithms.

•Establish credibility for maze
solving.

Hardware
implementation

•Designed basic network

•Memory modules

•Comparator blocks

•Hard wire 32 node network

•Implemented Dijkstra’s

Software driver

•Software generates maze

•Translates to network

•Communicates the network
to FPGA

Scale up and add-ons

•Network display through
software

•Implement for a 512 node
network

Software Prototypes

• Two steps

– Sequential, classic implementation

– Using structures similar to hardware to confirm
the correctness of parallel implementation

Hardware Implementations

Memory modules

dist 1 dist 2

 visited

prev 1 prev 2

51
2

lin
es

1 bit

51
2

lin
es

10 bits 10 bits

10 bits 10 bits

51
2

lin
es

51
2

lin
es

51
2

lin
es

15 bits 15 bits 15 bits 15 bits

SOFTWARE graph graph graph graph

51
2

lin
es

51
2

lin
es

51
2

lin
es

51
2

lin
es

Architecture (datapath)

• Comparing

• Updating

Software

dist1 dist2 perv1 perv2

dist1
dist1

dist1
graph

num_node

register

Compare

sum

Dist_u

Minimum Distance Node Finder

node index

in
de

x

graph1

graph2

graph3

graph4

dist1

dist2

Compare

Software and Driver

• Software spits out a
random network

• Sends this information in 32
bits to the FPGA

• FPGA computes the
minimum distance and
displays on the monitor

• Software sends the solved
maze to the user monitor

Experiences and Issues

• Monitor first, wrong approach
 SOLN: algorithm implementation
• Maze size too big too ambitious
 SOLN: 32 node smaller network
• Optimal structures for the memory modules for scaling up

and parallel reads and stores
• Algorithm

– Comparing the neighbors but ended in dead end
 SOLN: Compare all nodes

• Memory corruption
 SOLN: explicitly set values to reg in each state
• Debugging and high compile time

Summary

• Lessons learned
– Not to violate setup or hold times by trying to fit heavy computation

within a clock cycle; either make computations more efficient/ fast or
allocate multiple clock cycles for the computation.

– Allocating two dual port memory blocks to both the previous and
distance data as opposed to allocating a separate module per node

– There are two modules for scalability and efficient use of memory
resources

– Test the hardware after adding extra cycles of computation, makes it
easier to debug and therefore reduces development time

– We initially planned to compare all the distances but we found that
that would be too costly in terms of the hardware we generated for a
minor improvement in performance instead we decided to perform
the comparison stage of the algorithm 4 nodes at a time on each clock
cycle

