
Flappy Bird

Wei Zheng Gaoyuan Zhang
Yen Hsi Lin Junhui Zhang

Overview and Objectives
�  Motivated by the flappy bird on cell phone
�  Strategies:
 press the key to fly the bird
 the bird automatically falls down
 control the bird through the pipes with random heights
 fly as far as possible to get high scores
�  Combine the elements of other games
�  Objectives:
 make all things work together without bugs

Overview and Objectives

Overview and Objectives
�  Image processing
 pre-process the images to use
 Generate a memory initialization file for each image
 Single-port ROM memory blocks
 24-bit index color
�  Audio processing
 pre-process the audios
 Generate a memory initialization file for each audio
 Single-port ROM memory blocks
 44100Hz sampling rate 16-bit quantization

Architecture

VGA DISPLAY MODULE

Audio Controller

Keyboard Controller
� Use libusb C library to communicate with

USB keyboard

�  Spawn one thread to receive signal from
Keyboard, leaving the main program to
handle the sprite control

Game Logic
�  Interaction between user and hardware
◦ User: keyborad
◦ Hardware: vga and audio controller

� Do the computation and control the
game
◦ Generate the height of pipes randomly
◦ Control the up and down of bird
◦ Control when the game is over

Experience and issues in implementation

� Sprite background elimination
(when displaying scores, bird, and
sun)
◦  Simple color: check RGB value in ROM if it is

equal to background value.
◦ Complex color: No efficient way to eliminate

the background color.

Experience and issues in implementation

�  Sprite for pillars
◦  In order to realize pillars with different length using only one

sprite, we capture a sprite of “partial pillar”, with relatively small
height, and combine a certain number of such sprites to form a
pillar whose length is what we want.

�  Priority of sprites
◦  We set the priority of each sprites so that the screen will show

the correct image when sprites overlap with each other.

�  Frame update synchronization
◦  Receive and update coordination during synchronization
vcount>480

Experience and issues in implementation

�  Control signal to display the title
 We use one bit (first bit) of the 8-bit input as the signal

to control if the title “flappy bird” is displayed or not, so
that we can add more control signals by only
introducing one input signal.

�  Problem
◦ Don’t have enough space of RAM to add

more signals.

Experience and issues in implementation

� Game logic : Time
◦  System clock data type is not available in

calculation, ex: clock()
◦  Implement counter: loop number as time unit

collaborating with delay, ex: usleep()
� Game logic : Status
◦  Status variable: record jumping and falling
◦  Status variable cooperates with initial velocity

supporting continuous jumping without multi-
thread

Experience and issues in implementation

� Game logic : pillar display
◦ We combine the display of pillar with the check

condition (whether the pillar is on the screen or
not), and reset the coordinate of the pillar once
the condition is triggered.

Lesson learned

�  Sprite implementation
� Hardware and software collaboration
� Time management
� Architecture design of SoCKit board

