

Project Design CSEE4840

 Spring 2015

1

Brick Breaker Game

Team Members:

Fengyi Song(fs2523), Junchao Zhang(jz2606), Mingrui Liu (ml3663), Wanding Li(wl2501)

I. Introduction and Overview

We will implement a simple brick game. Here is how simple brick game works. You have layers

of colored bricks and a tossed up ball with which to break the layers. Controlling the momentum

of the ball (usually a white ball) is a paddle which you have to maneuver from side to side[1].

When the ball is bounced up by the paddle, it will hit a brick and then the brick is gone. After

that the ball will come down, if the paddle misses the ball, game is over. Users can use the

gamepad to control the position of paddle. At the same time, there will be music outputs to

match different game effects. The basic user interface may be similar to figure 1. If there is

enough time, the brick can be made more complex. For example, we can hide bonus in some

brick and once that brick is bounced, the bonus will jump out on screen the game score will

increase greatly.

Figure 1: Game User Interface

Project Design CSEE4840

 Spring 2015

2

The simple brick game implements the following functions: gamepad controller, game graphic

design and audio signal processing. Gamepad controller makes sure the gamepad can control the

position of paddle. Game graphic design is the user interface design and it should show the

correct routine of ball. Audio signal makes sure whenever the ball break a brick, there is a sound

effect.

II. Unit Level Design

Our system consists of four main parts: VGA block, Audio block and Controller. The Top-level

Units of the game is shown in figure 2.

Figure 2: Top-level Units of simple brick game

1. Game Controller Design

The game needs a controller to receive the operation signals from users and control the breaker.

We choose the PC game controller to realize the function. The controller is shown in figure3.

The game is for one player. So, we do not need two controllers for two players. If time permits,

we can also make the game as a competition between two players.

Controller Graphic Audio

 simple
brick game

Project Design CSEE4840

 Spring 2015

3

Figure 3: PC game controller

The controller can be directly connected to the SoCKit Board and communicate with the HPS

through USB port on the board. We only need arrow keys of the controller to direct the breaker

to catch the ball. A game controller driver should be built by SystemVerilog and the interface for

the game controller will be implemented in C program. The schematic diagram of the USB

circuitry is shown below.

Figure 4: Connections between CycloneV SoC FPGA and USB OTG PHY

The Sockit board provides USB interfaces using the SMSC USB3300 controller. A SMSC

USB3300 device in a 32-pin QFN package device is used to interface to a single Type AB

Micro-USB connector. This device supports UTMI+ Low Pin Interface (ULPI) to communicate

to USB 2.0controller in HPS. The ULPI interface consists of 12 interface pins, 8 bi-directional

data pins, 3 control pins, and a 60 MHz clock. As defined by OTG mode, the PHY can operate in

Project Design CSEE4840

 Spring 2015

4

Host or Device modes. When operating in Host mode, the interface will supply the power to the

device through the Micro-USB interface. In our project, we will make the PHY work in the

device mode as what we need are just signals from the game controller. The pin assignments for

the associated interface are listed in Table1 and Table2 below.

Table1: USB OTG PHY Pin Assignments

Signal Name FPGA Pin No. Description I/O Standard

HPS_USB_CLKOUT PIN_N16 60MHzReference Clock Output 3.3V

HPS_USB_DATA[0] PIN_E16 HPSUSB_DATA[0] 3.3V

HPS_USB_DATA[1] PIN_G16 HPSUSB_DATA[1] 3.3V

HPS_USB_DATA[2] PIN_D16 HPSUSB_DATA[2] 3.3V

HPS_USB_DATA[3] PIN_D14 HPSUSB_DATA[3] 3.3V

HPS_USB_DATA[4] PIN_A15 HPSUSB_DATA[4] 3.3V

HPS_USB_DATA[5] PIN_C14 HPSUSB_DATA[5] 3.3V

HPS_USB_DATA[6] PIN_D15 HPSUSB_DATA[6] 3.3V

HPS_USB_DATA[7] PIN_M17 HPSUSB_DATA[7] 3.3V

HPS_USB_DIR PIN_E14 Direction oftheData Bus 3.3V

HPS_USB_NXT PIN_A14 ThrottletheData 3.3V

HPS_USB_RESET_PHY PIN_G17 HPS USBPHYReset 3.3V

HPS_USB_STP PIN_C15 StopData Streamon theBus 3.3V

Table2: USB3300 Pin Assignments

Pin NAME TYPE ACTIVE LEVEL DESCRIPTION

1 GND Ground N/A Ground

2 GND Ground N/A Ground

3 CPEN Output,CMOS High EX. Supply EN

4 VBUS I/O,Analog N/A VBUS PIN

5 ID Input,Analog N/A ID PIN

Project Design CSEE4840

 Spring 2015

5

6 VDD3.3 Power N/A 3.3V Supply

7 DP I/O,Analog N/A D+ PIN

8 DM I/O,Analog N/A D- PIN

9 RESET Input,CMOS High Transceiver reset

10 EXTVBUS Input,CMOS High External bus detect

11 NXT Output,CMOS High Data throttling

12 DIR Output,CMOS N/A Data direction

13 STP Input,CMOS High Data stop

14 CLKOUT Output,CMOS N/A 60MHz CLK output

15 VDD1.8 Power N/A 1.8V for digital circuit

16 VDD3.3 Power N/A 0.1uF cap. connected

17 DATA[7] I/O,CMOS Pull-low N/A 8-bit bi-directional data bus

18 DATA[6] I/O,CMOS Pull-low N/A 8-bit bi-directional data bus

19 DATA[5] I/O,CMOS Pull-low N/A 8-bit bi-directional data bus

20 DATA[4] I/O,CMOS Pull-low N/A 8-bit bi-directional data bus

21 DATA[3] I/O,CMOS Pull-low N/A 8-bit bi-directional data bus

22 DATA[2] I/O,CMOS Pull-low N/A 8-bit bi-directional data bus

23 DATA[1] I/O,CMOS Pull-low N/A 8-bit bi-directional data bus

24 DATA[0] I/O,CMOS Pull-low N/A 8-bit bi-directional data bus

25 VDD3.3 Power N/A 0.1uF cap. connected

26 VDD1.8 Power N/A 1.8V for digital circuit

27 XO Output,Analog N/A Crystal Pin

28 XI Input,Analog N/A Crystal Pin

29 VDDA1.8 Power N/A 1.8V for analog circuit

30 VDD3.3 Power N/A Analog 3.3V supply

31 REG_EN I/O,CMOS Pull-low N/A On-chip 1.8V regulator enable

32 RBIAS Analog,CMOS N/A External bias resistor

Project Design CSEE4840

 Spring 2015

6

 GND FLAG Ground N/A Ground

2. Game Graphic Implementation

figure 5: Structure of graph module

The states of ball are categorized into 4 piece: up-left, up-right, down-left, down-right. In the up

states of the ball, it will either hit the bricks or the wall. If the brick hits the bricks, the brick will

disappear from the screen. For the state in which the ball is moving down, the ball will hit the

bricks, paddle, or loss. The position of the paddle is controlled by the peripheral. Combinational

logic could be applied to detect whether the ball hits the bricks and the corresponding signals

will be set to trigger the change in the brick color and output the sound.

In the RGB module, we could use either software or hardware to determine the way that paddle

and ball is shown

The ball_position module basically contains the coordinates of the ball.

The paddle module indicates the position of the paddle on the bottom of the screen.

Our game needs to display a ball, a paddle that bounces the ball, some bonus item falling from

top to bottom, some special effects when the ball hits the bonus, and also score as well as stage,

win/lose information. Based on the above display requirements, we use 4-layer display. Bottom

layer is responsible for displaying the background; mid1 layer is responsible for score, stage, and

win/lose information display; mid2 layer displays the bonus item and special effects when the

ball hits those items; top layer displays the bouncing ball and the paddle.

Project Design CSEE4840

 Spring 2015

7

Figure 6: Principle diagram for display module

For the display of each individual item, such as the ball, the board, bonus items, and the special

effects when the ball hit bonus items, as well as the backgrounds, we use sprites to implement

them and at the same time to save memory. Considering that there may be 3-6 bonus items, we

might need 7-10 sprites, far more less than 64, which means this scheme is workable.

As for the scan signal part, we use principle diagrams to describe it specifically.

Project Design CSEE4840

 Spring 2015

8

Figure 7: Principle diagram for line scan controller

Figure 8: Principle diagram for frame scan controller

3. Audio Signal Processing

We are going to use low power audio codec SSM2603 to process sound signal. The SSM2603 is

a low power, high quality stereo audio codec for portable digital audio applications with one set

Project Design CSEE4840

 Spring 2015

9

of stereo programmable gain amplifier line inputs and one monaural microphone input. The

SSM2603 software-programmable stereo output options provide the user with many application

possibilities. Its volume control functions provide a large range of gain control of the audio

signal[2]. Our main control hardware FPGA and we can connect SSM2603 to it. FPGA has

Linux operating system processor. Linux has codec driver interface for it. Our control hardware

FPGA and SSM2603 audio codec block diagram is shown below.

Figure 9: FPGA board

Project Design CSEE4840

 Spring 2015

10

Figure 10: SSM2603 audio codec functional block diagram

The traditional system architecture is as follows:

Figure 11: Traditional system architecture

Project Design CSEE4840

 Spring 2015

11

Linux audio codec driver has a lot of modules. ALSA module provides a unified interface to the

hardware and user application modules provide given functionalities to the end user. In our

project, we will insert the sound effect in user space and store it on hardware memory[3]. Then

through the SSM2603 codec the sound can be played.

The digital audio input can support the following four digital audio communication protocols:

right-justified mode, left-justified mode, I 2 S mode, and digital signal processor (DSP) mode.

The mode selection is performed by writing to the FORMAT bits of the digital audio interface

register (Register R7, Bit D1 and Bit D0). All modes are MSB first and operate with data of 16

to 32 bits. On the RECDAT output pin, the digital audio interface can send digital audio data for

recording mode operation. The digital audio interface outputs the processed internal ADC digital

filter data onto the RECDAT output.

The software control interface provides access to the user-selectable control registers and can

operate with a 2-wire (I2 C) interface. Within each control register is a control data-word

consisting of 16 bits, MSB first. Bit B15 to Bit B9 are the register map address, and Bit B8 to Bit

B0 are register data for the associated register map. SDIN generates the serial control data-word,

SCLK clocks the serial data, and CSB determines the I2 C device address. If the CSB pin is set

to 0, the address selected is 0011010; if 1, the address is 0011011.

III. Milestone Plan

For milestone 1, we are going to finish 25% of the whole project. We plan to show TA and

professor our bouncing ball, bricks and paddle on the screen. The wall instead of paddle bounces

the ball because paddle now is static. Once the brick is touched, it will vanish. And also the score

will increase.

For milestone 2, we are going to finish 50% of the whole project. At this point, the paddle can

move by controller and can bounce ball back.

For milestone3, we are going to finish 75% of the whole project. Since the sound effect happens

when the paddle bounces ball or a brick is touched, the sound effect is supposed to be added at

this point.

For the rest time, we may probably test our game again and again to make sure it works fine.

After that, if we have more time, we will improve our game by adding something to brick to

Project Design CSEE4840

 Spring 2015

12

make it more interesting for players. For example, we can make some brick special once the ball

touches it, the score doubles. Or we can design some other bonus. Also, we plan to design the

game as a competition between two players or use more than one paddle to receive the ball or

use two balls instead of just one. All in all, the purpose of this time period is to embellish the UI

and improve the function of the game to make it more entertaining. We hope we can have a good

presentation at the end of the class.

Reference:

[1] http://www.makeuseof.com/tag/simple-brick-breaker-the-old-classic-game-remains-as-

addictive-as-it-was-before-iphone/

[2]http://www.analog.com/media/en/technical-documentation/data-sheets/SSM2603.pdf

[3]http://free-electrons.com/doc/embedded_linux_audio.pdf

http://www.makeuseof.com/tag/simple-brick-breaker-the-old-classic-game-remains-as-addictive-as-it-was-before-iphone/
http://www.makeuseof.com/tag/simple-brick-breaker-the-old-classic-game-remains-as-addictive-as-it-was-before-iphone/

