

CSEE 4840 Embedded System Design

Flappy Bird Video Game

Wei Zheng wz2299

YenHsi Lin yl3284

Junhui Zhang jz2605

Gaoyuan Zhang gz2216

1. Introduction

We try to bring the popular game Flappy Bird, which is originally on Android

platform, to the FPGA board. The game is a side-scroller where the player controls a

bird, attempting to fly between rows of green pipes without coming into contact them.

If the player touches the pipes, it ends the game. The bird briefly flaps upward each

time the player taps the screen; if the screen is not tapped, the bird falls due to gravity.

2. Software and Hardware Components

The major components in our design includes the game controller, game logic, video

and audio module.

Figure. High level software and hardware design components

Game logic controller(software)

We implement the game logic by using C programming language. The game logic

controller should realize the functions which are indicated below: deriving the

location of the flappy bird from the keyboard, implementing the game rule (whether

the game is over or not, computing how many pillars the bird has passed), generating

http://en.wikipedia.org/wiki/Game_over
http://en.wikipedia.org/wiki/Gravity

the appropriate audio in terms of the game rule, and controlling the generation of

graphics. Based on the functions given above, there should be 3 submodules for the

game logic controller, the figure of which is shown below:

1. Game rules: This is the core submodule of the game logic controller which

interfaces with all of the other submodules, instructing them what to do based on the

game rules. It should constantly update the screen by supplying the graphic generator

with the location, the number of pillars that the bird has passed, as well as the

judgment whether the game is over.

To be specific, there should be several functions that could monitor the game:

1. A function that keeps track of the movement of the bird by the previous location,

instructions from the keyboard and also a subfunction that controls the automatic fall

of the bird. Once the control button is pressed, the bird would be granted with a

vertical upward speed v. Otherwise the bird would be doing a free-fall, Since the

horizontal location of the bird is unchanged, we only care about the vertical location

of the bird, which should be Ybird=v ∗ t −
1

2
∗ g ∗ t2

2. A function that calculates the real-time score. The function would compare the X

coordinate of the bird with that of the pillars. Since the speed of the pillars is constant,

we can use a counter to calculate the score. As long as the game is not over, the

counter would accumulate every time period (depending on the distance between

every adjacent pillar, and the speed of the pillar). The score would appear on the top

of the screen.

3. A function that determines whether the game is over or not. The function is

implemented by comparing the coordinates of the bird with that of the pillars, the

ceiling and the ground, and checking if there is any overlapping between them. If so,

it will force the bird to drop directly to the ground and then the submodule will send a

message to the graphic controller, to generate an final interface, indicating how many

scores are achieved, and a "play again" button.

4. A function that generates the X and Y coordinates of the pillars that has already

Game Rules

Submodule

Operation from the

keyboard
Select_audio

Audio Generator

Submodule

Graphic Generator

Submodule

X, Y,

ending

condition

To Graphic controller

(hardware)

To Audio controller

(hardware)

appeared on the screen, as well as the length of the upcoming pillar that is going to

appear from the right side of the screen. Since the X coordinate of the bird remains

invariant, the location of the pillars would be keep moving leftwards. The length of

the pillar should be random, as long as the distance between the pillars is constant.

2. Graphic generator: This submodule received all the data required for the generation

of graphic, including the coordinates of the bird and the pillars, the identification

whether the game is over or not, and so on. These coordinates are stored in memory,

updated according to the game logic. The memory is accessed by the graphic

controller through address, which then displays the necessary graphic on the screen.

3. Audio generator: The audio sounds needed in the game, including the background

music, the flappy sound of the bird, as well as the sound when the bird hits the pillar,

are encoded inside the audio generator. The submodule should instruct the audio

controller which one to play, based on the game logic.

3. VGA Block

vga controller

SOCkitboard includes a 15-pin D-SUB connector for VGA output. The VGA synchro

nization signals are provided directly from the Cyclone V SoC FPGA, and the Analog

Devices ADV7123 triple 10-bit high-speed video DAC (only the higher 8-bits are use

d) is used to produce the analog data signals (red, green, and blue). The following figu

re gives the associated schematic.

sprite controller

The input of the sprite controller is X and Y coordinate of different elements and then

the sprite controller will send the RGB values of each pixel to the VGA controller.

In our game, we are going to usesix types of elements that will be displayed on the

screen.

a)alive bird

b) dead bird

c)pipe

d)sky scene and ground scene

e)score indicator

f) start and pause button

Sky scene and ground scene are the background of the game. Pipes are the barrier of

the bird. They have different length and distance from each other. When the bird

touches any of the pipes, it should change to a dead bird pattern and the game is over.

In order to display each kind of basic elements on the screen, we can update each

element in the form of sprites. There are two levels of sprites shown on the screen, top

level and bottom level. The figures on the top level are alive bird, dead bird and pipes.

Thebackground scene on the bottom level will remain the same.

Memory Budget

Element Number of

sprites

Pixel size Size Example

Ground scene 1 64*80 5KB

Sky scene 1 128*400 50KB

Bird 2 80*60 4.69KB

Pipe 10 64*80

64*100

64*120

64*140

64*160

5KB

6.25KB

7.5KB

8.75KB

10KB

Score 10 30*40 1.17KB

Button 2 60*25 1.46KB

4. Audio interface in FPGA

Brief introduction

The Cyclone V SocKit board provides high-quality 24-bit audio via the analog

devices chip SSM2603 audio CODEC (Encoder/Decoder). This chip supports

microphone-in, line-in, and line-out ports as shown in figure. We are going to store

our sound effect and music in our SocKit board memory so we don’t need inputs

microphone-in and line-in. What we want just output our background music and

sound effects.

SSM2603 supports a sampling rate adjustable from 8 kHz, 11.025 kHz, 12 kHz, 16

kHz, 22.05 kHz, 24 kHz, 32 kHz, 44.1 kHz, 48 kHz, 88.2 kHz, and 96 kHz which we

often use is 44.1khz. From Nyquist theory, we know it can be used to sample at most

22khzvoice matching human’s acceptable frequency range.

Figure. Connections between FPGA and Audio CODEC

Figure. Pin assignment for audio CODEC

IO protocol I2C and audio transmission interface I2S

I2C(Inter-Integrated circuit):

The SSM2603 is controlled via a serial I2C bus interface, which is connected to pins

on the Cyclone V. I2C is an IO protocol used to communicate between master and

slave devices. There are read/write modes for master and slave devices.

SDIN(Serial data in):Transmission line for address, data and state symbol.

SCLK(Serial clock):Global clock used for I2C buses

ACK: acknowledgement signal generate by receiver or slave

S/P: START and STOP state symbol.

Figure. I2C Write and Read Sequences

I2S(Inter-IC sound):

I2S is an electrical serial bus interface standard used for connecting digital audio

devices together. We use I2S mode for our SM2603 with 32bit ISA communicating

with our sound device. There are also master and slaves modes. In our case, SM2603

is in master mode.

WS(Word select): WS=0 left side sound track; WS=1 right sound track.

SD(Serial Data):digital audio binary data.

SCK(Serial clock):global clock used for I2S bus.

Usually, ADC IC is master, and DAC is slave. However, it is not necessary. Master

has to send WS and SCK while slave must receive WS and SCK.

In I2S,M SB is always first bit, and LSB is the last. Bit B15 to Bit B9 are the register

map address, and Bit B8 to Bit B0 are register data for the associated register map.

http://en.wikipedia.org/wiki/Serial_bus

Figure. I2S Audio Input Mode

Figure. Simple System Configurations and Basic Interface Timing

Music in our design

In our flappy bird game, we will apply sound effects and background music during

the game.

Sound effect: Score counting (0.5 sec), bird jumping (0.5 sec), hitting on obstacle (0.5

sec) and game over (1sec).

Background music: about 30sec and repeat until the game is over.

Memory calculation

In our case, we try to save our memory so we assume that our sampling rate is 8kHz.

In I2S the data word consists of 16 bits that mean we use 16 bits to quantize one

sampling point. According to these specification, we can get our sound effect is about

8 KB(0.5sec) and 16KB(1sec), and background music is 480KB. As we know there is

a DDR3 1Gb SRAM in SocKit board, the music capacity is acceptable.

.

5. Milestone

Milestone1:implement video module.

Milestone2: implement audio, game logic and game controller module.

Milestone3: Integration of audio, video , game logic and game controller module.

