Eskimo @ Farm

Miguel Yanez, Prachi Shukla and Shruti Ramesh
{may2114, ps2829,sr3155}@columbia.edu

Overview:

Eskimo @ Farm is a single player, side scrolling, shoot em up game. It follows the
adventures of an eskimo navigating off the complexities of farm life, fighting off different
farm animals. Our design document comprises of the following :

Design Block Diagram with Descriptions
Game Logic as State Diagram

Graphics to be used

Player Input

Handling Audio

Milestones

o0k wh =

1. Design Block Diagram

SW

| Collision Detection |

?

¥1-3,y1-3

colision /_E
‘\ lives l req/update /

reg/update &

/ score
Enemy Al ~. | State / | NES Gontroller
Tracker /

Button Press

Game Engine

HW |
% sprite # track #
v | v
| Sprite Controller |-I—| Sprites | | Audio Controller |-I—| Tracks

) |

Audio Signal
hoount, vocount RGB g

| v '

|' WGA Controller |

VGA Signal

v

Figure 1: Overview - Game Engine Components

Block Descriptions:

SW Blocks:

1. Game Engine : The game logic is contained in this module. It takes in inputs from the
player, Enemy Al module and passes on the coordinates of these Sprites to the

Hardware i.e. Sprite Controller. In addition, it keeps track of the score of the eskimo,
health of eskimo and nature of enemy.

2,

Enemy Al : This module decides the coordinates at which the Enemy sprite needs to
be drawn and also specifies the type of the Enemy i.e. Pig or Horse or.. The Game
Engine sends a request for the x and y coordinates of the Enemy and this module
responds with the values.

State Tracker : This module keeps a track of the following attributes during the
game.lt sends periodic updates to the Game Engine.

1. Health : This module keeps a track of the health of the Eskimo. Typically the
Eskimo starts out with 3 lives and loses a life everytime he collides with an
enemy.The State Tracker either requests the current health of the Eskimo or sends
an update to this module when there is an Eskimo - Enemy collision and this module
updates the health count accordingly and sends back the updated health to state
tracker.

2. Collision Detection : There are two types of collisions possible. One when a bullet
shot by eskimo collides with an enemy and the other when a enemy collides with the
eskimo. The State Tracker sends the x and y coordinates of the bullet, enemy and
eskimo and this module calculates and checks for collisions and sends a notification to
the State Tracker in case of collision.

3. Scoring : Every time a bullet shot by the Eskimo collides with an Enemy, the
Eskimo scores a point. This module keeps a track of the score. The State Tracker
module either requests for the current score or sends an update when there is an
Enemy - Bullet collision.

4. NES Controller : This module deals with the inputs made by the player and conveys

them to the Game Engine.

HW Blocks :

1.

2,

3.

Sprite Controller : Based on the input from the Game Engine, the sprite controller
draws the particular sprite at the coordinates passed. It draws the sprite at the hcount,
vcount values passed from VGA controller.

Sprite : This module holds the sprites primarily for the Enemy [Pig, Horse, Duck,
Sheep, Boss], Eskimo, Health, Win, Lose and backdrop.

Audio Controller : The Game Engine provides the type of track to be played
depending on the state of the game. This module picks the track from the Tracks
module and plays the audio file.

4. Tracks : This module hold the different sound tracks to be played in the game.

5. VGA Controller: This module provides the hcount and vcount values to the Sprite
controller. It takes in the RGB values from the sprite controller and draws the sprites.

2. Game Logic

Eskimo Hit

No Shoot MNo_Hit \
enem Shoot —___ — Shoot
Health 0
Eskimo Hit /

Eskimo Hit
Shoot
En(-:m).r Hit
Enemy Type

\.q— Score Threshold Score > M

Figure 2: Overview - Game Logic State Machine

Attributes of Each State:
e Score

e Player state {co-ordinate, sprite state, health}
e [Enemy state {co-ordinate, type, sprite state}]
e [Bullet {co-ordinate}]

e Audio

State Diagram Table:

Current State Description Input Next State

S, (Start State) The game starts in Enemy arrives S,
this state. All the
attributes are
initialized to 1

S, Enemy state is Player shoots

updated
Player does not shoot

-

S, Player is shooting Enemy is hit .

Enemy is not hit)

DL lImw|iln|ln

S, Eskimo gets hit Eskimo collides with , When Health >0

enemy S; When Health =0
S, Enemy gets hit Bullet hits enemy S, Player shoots
S, Eskimo gets hit
S, New Enemy enters
S, Final Enemy arrives
S Lose State Eskimo dies -
Ss New Enemy New Enemy enters S, Enemy state updated
when score increases
over threshold value
S, Win State Eskimo wins -
3. Graphics
iﬁ- -+— hcountvcount —

sprite #

Sprite Controller

VGA Controller

RGE ——»

I— VGA Signal —»

Figure 3: Sprite Controller & VGA Controller Interaction

——

Eskima

I

The screen size is 640x480 pixels.

——

Game
Infomaion
Eﬂemﬁeﬁr
I_ Buliels
LJ_._,_._-—-—'—'_'_'_'_._._‘_._'

Figure 4: Sprite Controller - Layers

The VGA Controller will output hcount and vcount.

R

Eg.(:“g'round

e The Sprite Controller will take as input hcount, vcount and output the RGB value at
that location.

e The Sprite Controller will prioritize which RGB values to output depending on the
layers.

e The Sprite Controller will get input from the Game State Tracking component
specifying the positions of the sprites as well as which sprite to output.

4. Player Input

- -Jolo

Figure 5: NES Controller

Eskimo@Farm will use libusb to receive and decode button presses from a USB HID NES
Controller.

5. Audio

HFS -— DRAM

data addr

IRQ

S5M2603 Audio

Music Buffer - data —= Codec

Figure 6: Audio Overview

The SoCKit board uses the Analog Devices SSM2603 audio codec. The protocol the audio
codec uses for configuration is the Inter-Integrated Circuit (I°C) protocol. The HPS will read
audio files from DRAM and put them in the music buffer. The SSM2603 codec will
subsequently retrieve the audio file and play it through the line out port.

6. Milestones
Milestone 1 (April 2nd):

e Choose Sprites and Audio files.

e Basic game implementation using SDL in SW.
Milestone 2 (April 14th):

e Sprite Controller in HW.

e VGA Controller in HW.

e Phase out SDL from game replacing with HW components.
Milestone 3 (April 28th):

e Audio Controller in HW.

e Enemy Al
Final Submission (May 14th):

e Wrap up

e Documentation

e Presentation

