
a binary manipulation language

*
Apurv Gaurav (ag3596)

Peter H Burrows (phb2114)
Pinhong He (ph2482)
Zhibo Wan (zw2327)

*

Motivation, Overview, and Tutorials

Introduction of the blooRTLs

• Language Features

Project Architecture and keywords

• Scanner, Parser, AST, VHDL

Test Suites

Summary and Lessons Learned

Demo!

* Overview: Behavioral Language for

Object-Oriented RTL Specs

- An RTL description language geared towards catalyzing the

development, simulation, and synthesis of RTL specs

- “Object-Oriented” - but NOT in the traditional sense

- “Reasonably” fast clock frequency assumed (>MHz)

- Compiles down to Sequential VHDL

blooRTLs Tutorial

“Objects” of

variable “var”

1 0 0 0 0 0 0 1

1 0 0 0 1 0 0 1

ms

b

lsb

middle2

bits

Compiler Considerations for VHDL:

The VHDL Libraries

IEEE STANDARDIZED NOT STANDARDIZED

- Early 1990s → Synopsys developed the arithmetic library with a

user-friendly VHDL arithmetic syntax and packaged it into the IEEE

library

- Late 1990s → IEEE developed and standardized the numeric library

due to unexpected behavior across various toolkits that used the

arithmetic library

Compiler Considerations for VHDL:

The VHDL Libraries

NOT STANDARDIZED

- Tradeoff: The NUMERIC library is MORE RELIABLE for simulation

and synthesis, however it is much QUIRKIER !

- It does NOT raise an error for overflow/underflow

- It does NOT permit arithmetic for vectors of varying lengths;

however, there is a clever work-around

Compiler Considerations for VHDL:

The Sequential Framework

7

The Main Logic:

8

blooRTLs

Compiled

The Bottom Line : the

blooRTLs compiler performs

VHDL “length inferencing”

for you

2 clock cycles

Concat operator

Precompiler

- Before compiling, the blooRTLs source code MUST be precompiled

in order to:

- Cache the bit vector indices given by the BINMAP

- Check for arithmetic over/underflows

- In Ocaml, a map module was implemented to cache/log the values

and indices of variables and objects...

Precompiler: Ocaml environment

10

Keys (Variables)

“var” →

Values (Maps)

(137, [7;6;5;4;3;2;1;0], [1;0;0;0;1;0;0;1],0)

(1, [7], [1], 0)

(1, [0], [1], 0)

(1, [4;3], [0;1], 0)

Keys (Objects) Values (Tuples of int*int list * int list))

“” →

“msb” →

“lsb” →

“middle2bits” →

It’s a Map of Maps!

*

blooRTLs

source

code

Scanner Parser/AST

Compiler

Pre

compiler

VHDL

*

*Variable Declaration var1

*Assign value for variables :=

*Basic operations: + - * =

*Binary shifting << >>

*BINMAP

*IF-THEN-ELSE, REPEAT-UNTIL

*PRINT

*

*

*

*

* Using blooRTLs bit-mapping feature on sequential data, we can
encode important sequential data, such as DNA, and be able to
track genes

* In addition, DNA encoding can be optimized to use less space
and digits

* Original Encoding:

* A = 00, C = 01, T = 10, G = 11

* Huffman Encoding:

* A = 0, T = 10, C = 101, G = 110

*
* We will take a DNA sequence

that has been encoded into
binary numbers and count
how many of each
nucleotide there are.

* Features Tested:

* BINMAP, If-Then-Else,
Repeat-Until, PRINT, bit
manipulation, (Switch)

Output:

14

6

8

7

BINMAP var1 {

 nucleotide := [1][0];

}

var1 :=

1000110000000010001001101111010111001101001010000001110110001011000000;

adenosine := 0d; cytosine := 0d; thymine := 0d; guanine := 0d;

REPEAT (

IF (var1.nucleotide = 00)

THEN (adenosine := adenosine + 1d;

 var1 >> 2d;)

IF (var1.nucleotide = 01)

THEN (cytosine := cytosine + 1d;

 var1 >> 2d;)

IF (var1.nucleotide = 10)

THEN (thymine := thymine + 1d;

 var1 >> 2d;)

ELSE

 (guanine := guanine + 1d;

 var1 >> 2d;)

)

UNTIL (var1 = 0d)

PRINT adenosine; PRINT cytosine; PRINT thymine; PRINT guanine;

* Based on the
nucleotide
frequencies, we will
re-encode the DNA
code using the more
efficient Huffman
Algorithm

* Allots less bits to high
freq info, more bits
for low freq info

* Features Tested:

* BINMAP, If-Then-
Else, Repeat-Until,
PRINT, bit
manipultion,
(Switch)

BINMAP oldseq {

 nucleotide := [1][0];

}

oldseq :=

1001110000000010011001101111010111001101111010000001110101111011000000;

BINMAP newseq {

abits := [70]; tbits := [71][70]; cbits := [72][71][70];

gbits := [72][71][70]; }

newseq := 0d; seqlength := 0d;

REPEAT (

IF (oldseq.nucleotide = 00)

THEN (newseq.abits := 0;

 oldseq >> 2d;

 newseq >> 1d;

 seqlength := seqlength + 1d;)

IF (oldseq.nucleotide = 01)

THEN (newseq.tbits := 10;

 oldseq >> 2d;

 newseq >> 2d;

 seqlength := seqlength + 2d;)

IF (var1.nucleotide = 10)

THEN (newseq.cbits := 110;

 oldseq >> 2d;

 newseq >> 3d;

 seqlength := seqlength + 3d;)

ELSE

 (newseq.gbits := 111;

 oldseq >> 2d;

 newseq >> 3d;

 seqlength := seqlength + 3d;)

UNTIL (var1 = 0d)

PRINT newseq; PRINT seqlength;

*

*Athough summer term is SHORT

*Better sense of how does Ocaml work and creating a

compiler

*We learned to appreciate the complexity behind

routine operations like loops and if-then statements

that we take for granted in existing languages

*The levels of abstraction that exist between the

programming language and machine code

*Computer Science is more than just coding

*BINMAP var1 {

* nibble:=[3][2][1][0];

*}
*var1 := 10001110;

*var1.nibble := 0000;

*PRINT var1;

