
Proposal: blooRTLs - The Behavioral Language for
Object-Oriented Register Transfer Level Specs

Peter Burrows, Zhibo (Andy) Wan
Apurv Gaurav, Pinhong He

EE/CE Department, Columbia University

June 3, 2015

1 Motivation

While computer engineers may freely choose their preferred methodologies and tools to help
catalyze the Register Transfer Level (RTL) design process, the initial construction of the
behavioral spec is inevitable. Behavioral specs have been written in various forms, which
have consisted of prose, pseudo code, and block diagrams. Often, the eccentric form of
these specs results in confusion among a team of engineers with diverse skill sets and varying
academic/industrial backgrounds. Ultimately, it is the goal of blooRTLs to both universalize
and facilitate the development of an RTL behavioral spec.

2 Language Usage

At its core, blooRTLs is a bit manipulation language. The language is aimed to provide
users with the means to understand, design, validate, debug, and scale an RTL behavioral
spec, although its usage is not limited to this domain (as will become evident later in this
section).

2.1 Example “One’s Counter” RTL Spec Design using blooRTLs

In order to afford readers a better understanding of blooRTLs language, its usage is best
seen through a simple example:

• Verbal Description of a “One’s Counter” RTL Spec: Given a 32-bit binary number
placed on “input” bus, count the number of 1 bits in this number, and place result on
the “Output” bus

1

• blooRTLs program to represent a “One’s Counter” Algorithm:

Listing 1: Simple one’s counter algorithm implemented in blooRTLs

// Declare variables

ocount := 0 ; //ocount (i.e. one’s count) loaded with 0

data := load (9) ; //data is loaded with #9d, (Data:= 1001;)

// Map the least significant bit in Data

binmap data {
LSB = 0 ; //declares the LSB to be at bit position 0 of data

} //data.LSB can be called

// Main loop

r epeat
i f (data .LSB = 1){

ocount := ocount + 1 ; //increment 1’s count

}
data := data >> 1 ; //shift right by 1

u n t i l (Data = 0) ; //Loop body allows early exit

// Print Ocount to screen

pr in t ” bin : ocount=” ocount ”\n” ;
p r i n t ” i n t : ocount=” t o i n t (ocount) ;

• The output screen would print the format (bin, int), the variable (ocount), and the
value held by the variable (#10b, #2d):

>>> bin : ocount = 10
>>> i n t : ocount = 2

• The remaining steps of the RTL design flow are appended for curious readers (They
were adopted from Steven Nowick’s notes in his Advanced Logic Design course and
include contributions from Daniel Gajski). From Nowick’s notes, one can observe the
advantages blooRTLs to the RTL design flow.

• From the previous example, it also becomes evident that blooRTLs only permits vari-
ables to be stored as the binary type. However, it is worth mentioning that these
variables can be loaded (and displayed) as floating points (i.e. x := load(1.9)), in-
tegers (i.e. x :=load(8)), and ASCII strings (i.e. x := load(‘‘hello")). The input
type to load need not be specified; blooRTLs adjusts memory sizes of the variables
accordingly.

2

• A Note on Hardware Descriptive Languages (HDLs): In opposition to blooRTLs, HDLs
are syntactically rigid as they preallocate datapath resources based on the user’s code.
In the RTL design space, the purpose of blooRTLs is to verify a behavioral spec before
the combinational components and registers are selected. In turn, blooRTLs grants
designers the flexibility to allocate data path resources accordingly.

2.2 Other Uses

While the notion of facilitating a language that verifies behavioral RTL specs helped conceive
the idea of blooRTLs, the binmap “class” inherently permits the language to extend into other
domains.

• One such domain is encryption. Take, for example, a user who wishes to encrypt data
at the bit level using his own encryption method and send it. In particular, assume
the user wants to use alternating bits to send the first character and the remaining
alternating bits to send the second character. His or her program might look something
like this:

Listing 2: Arbitrary Bit Level Encryption Example

//Attach a sockets library

#inc lude blooRTLs sockets . h

senddata := 0 ; //senddata is loaded with #0b

// Encryption map: declares the bit positions that will hold

// the 1st and 2nd char values

binmap senddata {
f i r s t c h a r = 1 4 : 1 2 : 1 0 : 8 : 6 : 4 : 2 : 0 ;
second char = 1 5 : 1 3 : 1 1 : 9 : 7 : 5 : 3 : 1 ;

} // Note that ’:’ concatanates the bit positions

//load 1st char bit positions with "a":

senddata . f i r s t c h a r := load (”a”) ;
//load 2nd char bit positions with "b":

senddata . second char := load (”b”) ;

//senddata holds binary value of "a" and "b" intertwined:

// "a" = 01100001 in ASCII

// "b" = 01100010 in ASCII

// => senddata = 0011110000000010

// assuming a socket was set up, send the data:

socketsend (senddata) ; //senddata sent to another user

3

• Another useful call is the function method, which permits scalability for all binary
operations. An example containing two functions is seen below:

Listing 3: Arbitrary Bit Level Encryption Example

// Declare variables

data0 := load (40) ; //data0 is loaded with #40d

data1 := 10 ; //data1 is loaded with #10b, or #2d

datasum := 0 ;

// Main

datasum := add (data0 , data1) ;
pr int datasum () ;

// Functions

f unc t i on sum = add (a , b){
sum := a + b ;

} // the funtion returns the sum given args a,b

f unc t i on [] = print datasum () {
// datasum Ocount to screen

pr in t ” bin : datasum=” datasum ”\n” ;
p r i n t ” i n t : datasum=” t o i n t (datasum) ;
p r i n t ” s t r : datasum=” t o a s c i i (datasum) ;

} // the funtion prints data sum as described

>>> bin : datasum = 00101010
>>> i n t : datasum = 42
>>> s t r : datasum = ∗

4

Appendix - Nowick’s RTL design flow

A general RTL design flow has been provided by Steven Nowick. Using excerpts from Daniel
Gajski, Nowick’s RTL design process fully guides an engineer in the pursuit of transforming
an algorithm into an RTL architecture comprised of data path blocks synced to a control
unit. The design flow is summarized in the following steps:

0. Verbal Description of the Algorithm (behavioral)

1. Psuedo-Code of the Algorithm (behavioral) [Note: this step was replaced by blooRTLs]

2. Write RTL Specification: Generalized Algorithmic State Machine (ASM)

3. Allocate (Select) Datapath Blocks (and set harwired inputs + other optimizations)

4. Identify Status Signals

5. Draw Final Microarchitecture (RTL)

6. Derive Controller Specification = Control ASM Specification

7. Generate Symbolic State Diagram = Control FSM Specification

8. Synthesize Controller (FSM)

Write RTL Specification: Generalized Algorithmic State Machine
(ASM)

After the blooRTLs “one’s counter” program runs as desired, the next step of Nowick’s RTL
design flow calls for the blooRTLs syntax to be super imposed onto a Gajskiian generalized
ASM. Extending the “one’s counter” example, the resulting ASM would appear as follows:

5

Figure 1: “One’s Counter” ASM

Figure 2: Resource Allocation: Example Data Path Block for ‘Data’

Overall, it was the blooRTLs program that hastened the development of the ASM. The
remaining steps of the RTL design process heavily rely on this ASM. Each block of the
ASM embodies a state. The data path resources must be allocated to accomodate each
state (example seen above). Based on the resource allocation, the controller plane can be
developed, and ultimately, as one progresses through Nowick’s RTL flow, the design can be
fully synthesized.

6

