ProbL: Probabilistic Modeling Language

Nir Grinberg, Andrew Wong, Diana Liskovich, Sam Tkach
{ng2470,aw2192,d12956,st2794}@columbia. edu

June 4, 2015

1 Introduction

The vast amounts of data readily available for processing (a.k.a the buzz around
“Big Data”) have created an even greater need for careful modeling and anal-
ysis of these large datasets. One of the most common techniques for modeling
data is using probabilistic models, in particular, using Directed Graphical Mod-
els (DGM’s), which describe the dependencies between random variables in a
probabilistic model. DGM’s are Directed Acyclic Graphs (DAG’s) where nodes
are random variables and directed edges, connecting node u to v, represent
parenting such that: P(u,v) = P(u)P(v|u). Despite the somewhat confining
definition, DGM’s are suitable for modeling a wide range of important artificial
intelligence and machine learning models: from generalized linear regression,
factor analysis and PCA, through hidden markov models, time-series models,
Kalman filters, Bolzman Machines and hierarchical mixture models.

Still, specifying a probabilistic graphical model in C, Java or even R is not
native to the language, which oftentimes implies that people re-implement com-
mon statistical inference algorithms (e.g. Gibbs Sampling) for each model. The
use of third-party packages like meme in R is restrictive and does not easily
allow for user-defined distributions or functions. Third-party modeling software
such as WinBUGS [I] does allow for model specification, but suffers from the
same restrictive shortcomings as mentioned before.

2 Language Overview

The objective of ProbL is to allow for easy specification of Directed Graphical
Models and efficient inference of such models.



2.1 Built-in Types

Literals
true,false | boolean literals
-5,3.6,e,m | integer and real valued literals
Primitives
int integer
float double-precision floating point number
bool variable taking one of two values (true or false).
enum variable taking one value from a pre-defined set of values.
Collections
array \ one or two dimensional set of primitive types

Table 1: Built-in Types

2.2 Operators

Our most important operator is the ~ operator, which defines the distribution
of a random variable. For instance, in the sample program below we define y to
be normally distributed using the ~ operator with parameters that correspond
to a linear regression model. Other operators are:

=, ==, <, <=, >, >= | Numerical relational

+,-, %/ Arithmetic

&&, |, ! Logical

~ Sample a value from the distribution on the RHS

Table 2: Operators

2.3 Control Flow

ProbL. would support standard looping, conditional statements and block con-
trol flows as in C. The table below summarizes the

; end line

// begin/end comment block

for, while | standard looping constructs

if, else standard conditional statement

{} code block start and end (respectively)

Table 3: Control Flow



2.4 Built-in Functions

sum/() summation of values, mathematical symbol ¥

prod() product of values, mathematical symbol II

sqrt(float f) square root of f IT

exp(float a, float b) exponential a®

norm(float p, float o) normal distribution with mean p and variance o

uniform(float a, float b) | uniform distribution between values of a and b

bin(int n, int k, float p) | binomial distribution with n trials, k successes with probability p

Table 4: Built-in Functions

2.5 User Defined Functions

A user is able to define their own distribution through the use of a function. A
function can be defined this way:

fun function_name (argl, arg2 ,...):return_type

{
}

3 Typical Use Cases

As mentioned before, graphical models can be used to represent a wide range
of statistical models. Therefore, our language should be able to represent, for
example, the following use cases:

e Linear regression (as in the sample program below)
e Principle Component Analysis (PCA)

e Latent Dirichlet Allocation (LDA)

e Hidden Markov Models (HMM’s)

Of course, the strength of ProbL is in the ability it gives its users to use
the above as building blocks and construct more complex models, and represent
user-defined statistical dependencies.

4 Sample Program: Linear Regression

Below is an example program that given two vectors (z and y) of observed
variables would infer the parameters of the linear regression model (a, b and
sigma):

input {
float [] x;
float [] y;
}
output {
float a;



float b;
float sigma;

model {
y ~ norm(a + b x x, sigma);
}

References

[1] David J Lunn, Andrew Thomas, Nicky Best, and David Spiegelhalter.
Winbugs-a bayesian modelling framework: concepts, structure, and extensi-
bility. Statistics and computing, 10(4):325-337, 2000.



	Introduction
	Language Overview
	Built-in Types
	Operators
	Control Flow
	Built-in Functions
	User Defined Functions

	Typical Use Cases
	Sample Program: Linear Regression

