PRTZL REFERENCE MANUAL

Mathew Mallett
Rusty Nelson
Guangqi Luo

1.Introduction

We propose a language where vertices (aka nodes) and links are a first class data types.
These types are used to construct, manipulate and test an implicit graph structure which is the
main store in the language. A user of our language would be able to create and manipulate
graphs as easily as they could work with an array in most other languages. The language will
provide a way to construct the nodes and links, as well as provide efficient implementations of
common operations, like searching and path finding through a standard library. The data
structures will be open enough to enable developers to build other graph algorithms in the
language as well as support a variety of different graph types from directed/undirected,
weighted and restricted depending on the programmers adherence to their own rules.

2.Lexical Conventions

There are six types of tokens: identifiers, keywords, number literals, string literals,
operators, and other separators. Whitespace is ignored, unless it is included within a string
literal.

Reserved Keywords

The following keywords are reserved by the language and not available for variable or function
names

Number String Vertex Edge
if elseif else endif
while do endwhile

return endfunc null

Comments

/* this is a comment */

/* also

a

comment */

Identifiers

An identifier is an alphanumeric string. The first character must be alphabetic. We also allow _
within identifiers. |dentifiers are case sensitive.

Separators
We separate statements with ;. Anything after a ‘;’ is a new statement.

3.Types
We have 5 types

Number
Can represent both integer and floating point numbers.
The number 0 is considered “falsey” as a boolean value, all other Number values are
“truthy”.
Numbers take a default value of 0.
Numbers are mutable. You are able to reuse variables and rewrite the value stored
within them multiple times.
String
Represents a string of characters.
Strings take a default value of “’ (empty string)
Strings are immutable. Rewriting a String results in the creation of a new String buffer.
Vertex
Represents a vertex within the graph.
Vertex variables take a value of null until they are bound to a Vertex within the graph.
Vertexes are mutable. You are able to write changes to Vertex variables.
Vertexes have a key/value attribute system attached to them. You are able to attach
additional information about a specific vertex through a key/value pair.

Edge
Represents an edge between two Vertexes.
Edge variables take a value of null until they are bound to an Edge within the graph.
Edges are mutable. You are able to write changes to Edge variables.
Edges have a key/value attribute system attached to them. You are able to attach
additional information about a specific vertex through a key/value pair.

List

A list containing any of the other data types. Each list is able to hold one data type. Lists
are mutable, you can add and remove items from a list.
Lists variables are initialized to null

null
null is a keyword that indicates that a variable has not had a valid pointer assigned to it, or
otherwise does not point to a valid object.

Literals
We have number and string literals, as well as an empty list literal.
Number literal
1
42
3.141592
String literal
“I am literally a literal”
“Hello, World!”

€€

Empty List literal
[]

4.Expressions

Below we outline the expressions within our language. We also define order of operations and
left or right associativity for each operation. An expression is made up of one or more of the
operators listed below. You are able to naturally combine operators to form sequences of
complex operations, as long as the types align correctly.

Variable declaration

A declaration is made of two tokens: a type identifier, and a variable identifier. Once a variable
identifier has been used within the current scope, you aren’t able to use that identifier again. If
you reuse an identifier within a more specific scope, the identifier of the more specific scope will
shadow the less specific identifier, just as in C. Variable declarations must be the leftmost
section of an expression.

Here are declarations of our 5 types:
Number my_ num;

String my_string;

Vertex my_ vert;

Edge my_edge;

List my list;

Assignment

Assign a literal or another expression to a variable
my_num = 3;

my_string = “I am literally a literal”;

You can declare and assign in the same expression

Number my_other_num = 3.141592;
my_num = my_other num + 32;

Vertex my other_vert = my_vert;

Assignment is right associate. Everything to the right of = is evaluated first. The left side of =
(Ivalue) must be either a variable declaration or a variable identifier. Other expressions are not
valid lvalues.

Binary operators

We support standard operators on Number type, with PEMDAS order of operations
+

*

/
my num =1 + 2 / 3;
Number my_other_num = my_num + 3.141592;

You can concatenate String types with the *
String my string = “I am literally “ ~ “a literal”;
String my_longer_string = my_string ~ “ Hello, World!?”;

Binary operators are left associative. The left side of the expression is evaluated first, then the
right side, then the operator is applied.

Parenthesis

Use parenthesis to increase the precedence of a sub-expression
Number my number = (1 + 2) * 3; /* 9 */

Binary comparators
We can compare two numbers with the C style comparators

Comparators return 1 for true, 0 false

Number my_num = 3.14 > 3.13; /* 1 */
my_num = 24 <= -24; /* @ */

Comparators are left associative.

Unary operators

Unary minus (-) inverts the sign on a Number
Number my_number = 42;

my_number = -my_number; /* -42 */

Not operator inverts the logical truth value of the Number. 0 is false, anything else is true
Number my_number = l!@; /* 1 */
my_number = (1 + 1); /* @ */

Precedence of operators

In order of most to least precedence
I'- (Unary minus)

/ *

+ -

==l=<<=>>=

Lists

Allow you to store lists of elements, where all contained elements are the same type. You can
create a list with the empty list literal []. You can then add elements onto the end with add().
You can get a specific index with the [] syntax similar to C, you can get the length with .length(),
and you can empty it with .clear().

List my_list = [];
add(my_list, 3.14);
add(my_list, 42);

my_list[e]; /* 3.14 */

length(my _list); /* 2 */

4.1.Graph Operators

There are three primary operations that interface with the graph. The graph is implicitly declared
in any PRTZL program, and we provide operators to insert, retrieve, and remove vertices from it.

Insert key operator <+ String string +>

Inserts the string key into the graph. String can be a variable or a literal.
<+ ‘“Detroit” +>; /* insert detroit vertex into the graph */

String my_ string = “Houston”
<+ my_string +>;

Query key operator <? String string ?>
Check the existence of a vertex within a graph, returns the Vertex object, or null object

Vertex my_vertex = <? “Detroit” ?>; /* gives the Vertex for Detroit */
Vertex my_other_vertex = <? “Miami” ?>; /* gives null */

my_other_vertex == null; /* gives 1 */

Delete vertex from the graph <- String string ->

Attempts to delete the vertex from the graph. If it does not exist, returns 0, if it does exist, it
removes all edges to and from the vertex, then removes it from the graph structure, returning 1

Number success = <- “Detroit” ->; /* Detroit is deleted, and returns true
*/

success = <- “Detroit” ->; /* Detroit is not in the graph this time, now
returns false; */

Vertex data fields

You can store key/value pairs in a Vertex object to associated data with that Vertex with the .
operator. Gives null on properties that have not been set yet. You can put Number, String,
Vertex, Edge, and Lists into a value. Keys are alphanumeric and allow _ .

Vertex houston = <? “Houston” ?>;
houston.visited = 9;
houston.visited; /* @ */

houston.other; /* null */

All Vertices have the following properties built into them
out List of outbound Edges

in List of inbound Edges

in_degree Number of inbound edges

out_degree Number of outbound edges

Edges
Edges are similar to Vertices. They are created when you link two Vertices together. You are
able to attach key/value pairs to Edges in the same manner as Vertices.

All Edges have the following properties in their key/value map.
to Destination Vertex

from Source Vertex

weight Number weight of the edge, if not specified, is 1

5.Control Flow

Conditional branching

Use if elseif else to group conditional branches together. Each conditional flow has an if, and
optionally has more conditionally executed statements as elseif. elseif is executed if the
preceding if and elseif's did not evaluate to true. If none of the conditions were true, else clause
is invoked. The end of a string of if elseif else is marked with an endif. Every conditional flow is
marked by one if/endif pair, optionally many elseif, and optionally one else as the final
conditional branch.

if(1 == 0)

/* do this */
elseif(1 == 2)

/* do this */
else

/* do this */
endif

/* another example */
if(1)

/* conditional body */
endif

Loops

We support the while loop. The for loop has 2 pieces. The first is a statement that determines
the number of iterations of the loop, the second is the body of the loop. Anything declared in the
for statement has loop scope, not global scope. The variables exist only within the loop and are
reclaimed after the loop finishes.

Broken down:

while (/* continue looping condition */) do
/* loop body */

end

And an example iterating a List.

List my_list = [];
/* list is filled here */

Number i = ©
while(i < list_length(my_list)) do
my list[i]; /* do something with this element */

i=1i+1;
endwhile

6.Functions
Function declaration is similar to C, with a type, label, and argument signature. The end of the
function is denoted with the end keyword.

A breakdown of the function declaration with optional pieces marked with []

return_type function_name([arg_type arg name, arg_type arg _name])
[function body, has function scope]
return a_variable_of_return_type;

end

/* here is a demonstration */

Number my_ function(Number argl, Number arg2)
/* variables declared here have function, not global, scope */
Number local var = 2;
return argl + arg2 + arg3;

endfunc

Functions can be recursive. Functions must be declared within global scope.

Calling a function
my_function(argl, arg2);

7.Scope Rules
Scoping is simple. We have global scope, if/else scope, loop scope, and function scope.

Anything not declared within an if/else statement, loop, or function is global scope. Globally
scoped identifiers are visible anywhere within the program.

If/else, loop, and function scope all work the same. Anything declared within the bodies of these
structures have scope limited to the body of the structure. You are able to reuse identifiers that
have been used at global scope, the more specific scope will shadow the global identifier.
Anything declared within the more specific scope will go away after the body finished (if
completes, loop finishes, function returns).

A nested if/else or loop will have its own scope, the same rules apply. You are able to see
everything from the higher level scope, but the higher level scope doesn’t have access to the
more limited scope.

8.Standard Library

The following function are built into the language and available to use at any time.

Number link(Vertex a, Vertex b)
Creates a unidirectional Edge link from Vertex a to Vertex b
Returns 1 on success

Number bi link(Vertex a, Vertex b)
Create a bidirectional Edge link from Vertex b to Vertex b and back.
Internally, creates 2 Edges
Returns 1 on success

Number weighted_link(Vertex a, Vertex b, Number weight)
Create a weighted Edge from Vertex a to Vertex b
Returns 1 on success

Number weighted_bi_link(Vertex a, Vertex b, Number weight)
Create a weighted bidirectional Edge between Vertex a and Vertex b
Returns 1 on success

Number add(List 1, <Type> item)
Add a new entry to the end of the list. Type must match the type of the list.
Returns 1 on success

Number remove(List 1, Number index)
Removes the index from the list
Returns 1 on success

Number list_length(List 1)
Returns the length of the list

Number string length(String s)
Returns the length of the String

Number print_number (Number n)
Prints the number to STDOUT

Number print_string(String s)
Prints the string to STDOUT

Number print_vertex(Vertex v)
Prints the Vertex to STDOUT

Number print_edge(Edge e)
Prints the Edge to STDOUT

Number print list(List 1)
Prints the entries of the list to STDOUT

References

Dennis M. Ritchie, C Reference Manual
http://www.cs.columbia.edu/~sedwards/papers/cman.pdf

http://cm.bell-labs.com/cm/cs/who/dmr/cman.pdf
http://www.cs.columbia.edu/~sedwards/papers/cman.pdf

